Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 22(9): 1450-1459, 2019 09.
Article in English | MEDLINE | ID: mdl-31427771

ABSTRACT

The rodent hippocampus spontaneously generates bursts of neural activity (replay) that can depict spatial trajectories to reward locations, suggesting a role in model-based behavioral control. A largely separate literature emphasizes reward revaluation as the litmus test for such control, yet the content of hippocampal replay under revaluation conditions is unknown. We examined the content of awake replay events following motivational shifts between hunger and thirst. On a T-maze offering free choice between food and water outcomes, rats shifted their behavior toward the restricted outcome, but replay content was shifted away from the restricted outcome. This effect preceded experience on the task each day and did not reverse with experience. These results demonstrate that replay content is not limited to reflecting recent experience or trajectories toward the preferred goal and suggest a role for motivational states in determining replay content.


Subject(s)
Behavior, Animal/physiology , Hippocampus/physiology , Motivation/physiology , Reward , Animals , Male , Rats , Rats, Long-Evans
2.
Cell Rep ; 18(13): 3204-3218, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28355571

ABSTRACT

Secreted proteins in the bone marrow microenvironment play critical roles in acute myeloid leukemia (AML). Through an ex vivo functional screen of 94 cytokines, we identified that the pro-inflammatory cytokine interleukin-1 (IL-1) elicited profound expansion of myeloid progenitors in ∼67% of AML patients while suppressing the growth of normal progenitors. Levels of IL-1ß and IL-1 receptors were increased in AML patients, and silencing of the IL-1 receptor led to significant suppression of clonogenicity and in vivo disease progression. IL-1 promoted AML cell growth by enhancing p38MAPK phosphorylation and promoting secretion of various other growth factors and inflammatory cytokines. Treatment with p38MAPK inhibitors reversed these effects and recovered normal CD34+ cells from IL-1-mediated growth suppression. These results highlight the importance of ex vivo functional screening to identify common and actionable extrinsic pathways in genetically heterogeneous malignancies and provide impetus for clinical development of IL-1/IL1R1/p38MAPK pathway-targeted therapies in AML.


Subject(s)
Disease Progression , Interleukin-1/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Bone Marrow/drug effects , Bone Marrow/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Inflammation Mediators/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Interleukin-1beta/blood , Interleukin-1beta/metabolism , Models, Biological , Monocytes/metabolism , Phosphorylation/drug effects , Receptors, Interleukin-1/metabolism , Signal Transduction/drug effects , Tumor Stem Cell Assay , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Hippocampus ; 27(5): 580-595, 2017 05.
Article in English | MEDLINE | ID: mdl-28177571

ABSTRACT

The decoding of a sensory or motor variable from neural activity benefits from a known ground truth against which decoding performance can be compared. In contrast, the decoding of covert, cognitive neural activity, such as occurs in memory recall or planning, typically cannot be compared to a known ground truth. As a result, it is unclear how decoders of such internally generated activity should be configured in practice. We suggest that if the true code for covert activity is unknown, decoders should be optimized for generalization performance using cross-validation. Using ensemble recording data from hippocampal place cells, we show that this cross-validation approach results in different decoding error, different optimal decoding parameters, and different distributions of error across the decoded variable space. In addition, we show that a minor modification to the commonly used Bayesian decoding procedure, which enables the use of spike density functions, results in substantially lower decoding errors. These results have implications for the interpretation of covert neural activity, and suggest easy-to-implement changes to commonly used procedures across domains, with applications to hippocampal place cells in particular. © 2017 Wiley Periodicals, Inc.


Subject(s)
Action Potentials , Hippocampus/physiology , Neurons/physiology , Signal Processing, Computer-Assisted , Animals , Bayes Theorem , Electrodes, Implanted , Electrophysiology/methods , Male , Maze Learning/physiology , Models, Neurological , Rats, Long-Evans
4.
Blood ; 124(22): 3260-73, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25293778

ABSTRACT

Recent studies have revealed that p27, a nuclear cyclin-dependent kinase (Cdk) inhibitor and tumor suppressor, can acquire oncogenic activities upon mislocalization to the cytoplasm. To understand how these antagonistic activities influence oncogenesis, we dissected the nuclear and cytoplasmic functions of p27 in chronic myeloid leukemia (CML), a well-characterized malignancy caused by the BCR-ABL1 tyrosine kinase. p27 is predominantly cytoplasmic in CML and nuclear in normal cells. BCR-ABL1 regulates nuclear and cytoplasmic p27 abundance by kinase-dependent and -independent mechanisms, respectively. p27 knockdown in CML cell lines with predominantly cytoplasmic p27 induces apoptosis, consistent with a leukemogenic role of cytoplasmic p27. Accordingly, a p27 mutant (p27(CK-)) devoid of Cdk inhibitory nuclear functions enhances leukemogenesis in a murine CML model compared with complete absence of p27. In contrast, p27 mutations that enhance its stability (p27(T187A)) or nuclear retention (p27(S10A)) attenuate leukemogenesis over wild-type p27, validating the tumor-suppressor function of nuclear p27 in CML. We conclude that BCR-ABL1 kinase-dependent and -independent mechanisms convert p27 from a nuclear tumor suppressor to a cytoplasmic oncogene. These findings suggest that cytoplasmic mislocalization of p27 despite BCR-ABL1 inhibition by tyrosine kinase inhibitors may contribute to drug resistance, and effective therapeutic strategies to stabilize nuclear p27 must also prevent cytoplasmic mislocalization.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cytoplasm/metabolism , Fusion Proteins, bcr-abl/physiology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Animals , Cells, Cultured , Genes, Tumor Suppressor , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oncogene Proteins/metabolism , Protein Transport/genetics
5.
Appl Environ Microbiol ; 79(17): 5272-82, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23811504

ABSTRACT

Conjugative plasmids are known to facilitate the acquisition and dispersal of genes contributing to the fitness of Pseudomonas spp. Here, we report the characterization of pA506, the 57-kb conjugative plasmid of Pseudomonas fluorescens A506, a plant epiphyte used in the United States for the biological control of fire blight disease of pear and apple. Twenty-nine of the 67 open reading frames (ORFs) of pA506 have putative functions in conjugation, including a type IV secretion system related to that of MOBP6 family plasmids and a gene cluster for type IV pili. We demonstrate that pA506 is self-transmissible via conjugation between A506 and strains of Pseudomonas spp. or the Enterobacteriaceae. The origin of vegetative replication (oriV) of pA506 is typical of those in pPT23A family plasmids, which are present in many pathovars of Pseudomonas syringae, but pA506 lacks repA, a defining locus for pPT23A plasmids, and has a novel partitioning region. We selected a plasmid-cured derivative of A506 and compared it to the wild type to identify plasmid-encoded phenotypes. pA506 conferred UV resistance, presumably due to the plasmid-borne rulAB genes, but did not influence epiphytic fitness of A506 on pear or apple blossoms in the field. pA506 does not appear to confer resistance to antibiotics or other toxic elements. Based on the conjugative nature of pA506 and the large number of its genes that are shared with plasmids from diverse groups of environmental bacteria, the plasmid is likely to serve as a vehicle for genetic exchange between A506 and its coinhabitants on plant surfaces.


Subject(s)
Plasmids , Pseudomonas fluorescens/genetics , Conjugation, Genetic , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Enterobacteriaceae/genetics , Gene Transfer, Horizontal , Malus/microbiology , Molecular Sequence Data , Open Reading Frames , Plant Diseases/microbiology , Pseudomonas syringae/genetics , Pyrus/microbiology , Sequence Analysis, DNA , United States
6.
PLoS One ; 6(1): e16329, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21298013

ABSTRACT

Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists.


Subject(s)
Biological Evolution , Genetic Variation , Genome, Viral/genetics , Mycobacteriophages/genetics , Base Sequence , DNA, Viral/genetics , Geography , Mycobacteriophages/immunology , Mycobacteriophages/isolation & purification , Sequence Analysis, DNA , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...