Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3082, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600090

ABSTRACT

Faraday rotation is a fundamental effect in the magneto-optical response of solids, liquids and gases. Materials with a large Verdet constant find applications in optical modulators, sensors and non-reciprocal devices, such as optical isolators. Here, we demonstrate that the plane of polarization of light exhibits a giant Faraday rotation of several degrees around the A exciton transition in hBN-encapsulated monolayers of WSe2 and MoSe2 under moderate magnetic fields. This results in the highest known Verdet constant of -1.9 × 107 deg T-1 cm-1 for any material in the visible regime. Additionally, interlayer excitons in hBN-encapsulated bilayer MoS2 exhibit a large Verdet constant (VIL ≈ +2 × 105 deg T-1 cm-2) of opposite sign compared to A excitons in monolayers. The giant Faraday rotation is due to the giant oscillator strength and high g-factor of the excitons in atomically thin semiconducting transition metal dichalcogenides. We deduce the complete in-plane complex dielectric tensor of hBN-encapsulated WSe2 and MoSe2 monolayers, which is vital for the prediction of Kerr, Faraday and magneto-circular dichroism spectra of 2D heterostructures. Our results pose a crucial advance in the potential usage of two-dimensional materials in ultrathin optical polarization devices.

2.
Opt Express ; 31(23): 37663-37672, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017892

ABSTRACT

Optomechanical magnetometers enable highly sensitive magnetic field sensing. However, all such magnetometers to date have been optically excited and read-out either via free space or a tapered optical fiber. This limits their scalability and integrability, and ultimately their range of applications. Here, we present an optomechanical magnetometer that is excited and read-out via a suspended optical waveguide fabricated on the same silicon chip as the magnetometer. Moreover, we demonstrate that thermomechanical noise limited sensitivity is possible using portable electronics and laser. The magnetometer employs a silica microdisk resonator selectively sputtered with a magnetostrictive film of galfenol (FeGa) which induces a resonant frequency shift in response to an external magnetic field. Experimental results reveal the retention of high quality-factor optical whispering gallery mode resonances whilst also demonstrating high sensitivity and dynamic range in ambient conditions. The use of off-the-shelf portable electronics without compromising sensor performance demonstrates promise for applications.

3.
Small Methods ; 6(11): e2200885, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36228108

ABSTRACT

A Faraday rotation spectroscopy (FRS) technique is presented for measurements on the micrometer scale. Spectral acquisition speeds of about two orders of magnitude faster than state-of-the-art modulation spectroscopy setups are demonstrated. The experimental method is based on charge-coupled-device detection, avoiding speed-limiting components, such as polarization modulators with lock-in amplifiers. At the same time, FRS spectra are obtained with a sensitivity of 20 µrad ( 0.001 ° \[0.001{\bm{^\circ }}\] ) over a broad spectral range (525-800 nm), which is on par with state-of-the-art polarization-modulation techniques. The new measurement and analysis technique also automatically cancels unwanted Faraday rotation backgrounds. Using the setup, Faraday rotation spectroscopy of excitons is performed in a hexagonal boron nitride-encapsulated atomically thin semiconductor WS2 under magnetic fields of up to 1.4 T at room temperature and liquid helium temperature. An exciton g-factor of -4.4 ± 0.3 is determined at room temperature, and -4.2 ± 0.2 at liquid helium temperature. In addition, FRS and hysteresis loop measurements are performed on a 20 nm thick film of an amorphous magnetic Tb20 Fe80 alloy.

4.
Nat Commun ; 10(1): 1367, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894529

ABSTRACT

The original version of this Article contained errors in the author affiliations. Affiliation 1 incorrectly read 'School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2031, Australia' and affiliation 4 incorrectly read 'School of Engineering, RMIT University, Melbourne, VIC 3001, Australia.' This has now been corrected in both the PDF and HTML versions of the Article.

5.
J Nanosci Nanotechnol ; 19(8): 4987-4993, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30913811

ABSTRACT

In this work, magnetic and optical properties of magnetic nanoparticles were investigated, where the particles of iron oxide were prepared with a co-precipitation route and the component of gold was built up by reduction of AuCl4- on the surface of iron oxide to assemble nanocomposite structures in the form of an electrostatic stabilized suspension. The size of the particles obtained with TEM increased from of 8.9 ± 2.7 to 16 ± 6 nm after the procedure of hybridisation. In order to distinguish the impact of the gold on the optical properties, UV-Vis and Raman spectroscopy techniques were used. Magnetic properties were studied in the temperature range of 5-300 K and the superparamagnetic state of MNPs at room temperature was confirmed for both systems.

6.
Nat Commun ; 10(1): 865, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808867

ABSTRACT

Negative carbon emission technologies are critical for ensuring a future stable climate. However, the gaseous state of CO2 does render the indefinite storage of this greenhouse gas challenging. Herein, we created a liquid metal electrocatalyst that contains metallic elemental cerium nanoparticles, which facilitates the electrochemical reduction of CO2 to layered solid carbonaceous species, at a low onset potential of -310 mV vs CO2/C. We exploited the formation of a cerium oxide catalyst at the liquid metal/electrolyte interface, which together with cerium nanoparticles, promoted the room temperature reduction of CO2. Due to the inhibition of van der Waals adhesion at the liquid interface, the electrode was remarkably resistant to deactivation via coking caused by solid carbonaceous species. The as-produced solid carbonaceous materials could be utilised for the fabrication of high-performance capacitor electrodes. Overall, this liquid metal enabled electrocatalytic process at room temperature may result in a viable negative emission technology.

7.
Nat Commun ; 9(1): 3618, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190463

ABSTRACT

Two-dimensional piezotronics will benefit from the emergence of new crystals featuring high piezoelectric coefficients. Gallium phosphate (GaPO4) is an archetypal piezoelectric material, which does not naturally crystallise in a stratified structure and hence cannot be exfoliated using conventional methods. Here, we report a low-temperature liquid metal-based two-dimensional printing and synthesis strategy to achieve this goal. We exfoliate and surface print the interfacial oxide layer of liquid gallium, followed by a vapour phase reaction. The method offers access to large-area, wide bandgap two-dimensional (2D) GaPO4 nanosheets of unit cell thickness, while featuring lateral dimensions reaching centimetres. The unit cell thick nanosheets present a large effective out-of-plane piezoelectric coefficient of 7.5 ± 0.8 pm V-1. The developed printing process is also suitable for the synthesis of free standing GaPO4 nanosheets. The low temperature synthesis method is compatible with a variety of electronic device fabrication procedures, providing a route for the development of future 2D piezoelectric materials.

8.
Nanoscale ; 10(33): 15615-15623, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30090912

ABSTRACT

Atomically thin, semiconducting transition and post transition metal oxides are emerging as a promising category of materials for high-performance oxide optoelectronic applications. However, the wafer-scale synthesis of crystalline atomically thin samples has been a challenge, particularly for oxides that do not present layered crystal structures. Herein we use a facile, scalable method to synthesise ultrathin bismuth oxide nanosheets using a liquid metal facilitated synthesis approach. Monolayers of α-Bi2O3 featuring sub-nanometre thickness, high crystallinity and large lateral dimensions could be isolated from the liquid bismuth surface. The nanosheets were found to be n-type semiconductors with a direct band gap of ∼3.5 eV and were suited for developing ultra violet (UV) photodetectors. The developed devices featured a high responsivity of ∼400 AW-1 when illuminated with 365 nm UV light and fast response times of ∼70 µs. The developed methods and obtained nanosheets can likely be developed further towards the synthesis of other bismuth based atomically thin chalcogenides that hold promise for electronic, optical and catalytic applications.

9.
Adv Mater ; 30(20): e1704756, 2018 May.
Article in English | MEDLINE | ID: mdl-29602253

ABSTRACT

While the remarkable properties of 2D crystalline materials offer tremendous opportunities for their use in optics, electronics, energy systems, biotechnology, and catalysis, their practical implementation largely depends critically on the ability to exfoliate them from a 3D stratified bulk state. This goal nevertheless remains elusive, particularly in terms of a rapid processing method that facilitates high yield and dimension control. An ultrafast multiscale exfoliation method is reported which exploits the piezoelectricity of stratified materials that are noncentrosymmetric in nature to trigger electrically-induced mechanical failure across weak grain boundaries associated with their crystal domain planes. In particular, it is demonstrated that microfluidic nebulization using high frequency acoustic waves exposes bulk 3D piezoelectric crystals such as molybdenum disulphide (MoS2 ) and tungsten disulphide (WS2 ) to a combination of extraordinarily large mechanical acceleration (≈108 m s-2 ) and electric field (≈107 V m-1 ). This results in the layered bulk material being rapidly cleaved into pristine quasi-2D-nanosheets that predominantly comprise single layers, thus constituting a rapid and high throughput chip-scale method that opens new possibilities for scalable production and spray coating deposition.

10.
Nano Lett ; 17(12): 7831-7838, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29095626

ABSTRACT

We demonstrate a magnetocaloric ferrofluid based on a gadolinium saturated liquid metal matrix, using a gallium-based liquid metal alloy as the solvent and suspension medium. The material is liquid at room temperature, while exhibiting spontaneous magnetization and a large magnetocaloric effect. The magnetic properties were attributed to the formation of gadolinium nanoparticles suspended within the liquid gallium alloy, which acts as a reaction solvent during the nanoparticle synthesis. High nanoparticle weight fractions exceeding 2% could be suspended within the liquid metal matrix. The liquid metal ferrofluid shows promise for magnetocaloric cooling due to its high thermal conductivity and its liquid nature. Magnetic and thermoanalytic characterizations reveal that the developed material remains liquid within the temperature window required for domestic refrigeration purposes, which enables future fluidic magnetocaloric devices. Additionally, the observed formation of nanometer-sized metallic particles within the supersaturated liquid metal solution has general implications for chemical synthesis and provides a new synthetic pathway toward metallic nanoparticles based on highly reactive rare earth metals.

11.
Nanoscale ; 9(48): 19162-19175, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29186236

ABSTRACT

Attributing to their distinct thickness and surface dependent physicochemical properties, two dimensional (2D) nanostructures have become an area of increasing interest for interfacial interactions. Effectively, properties such as high surface-to-volume ratio, modulated surface activities and increased control of oxygen vacancies make these types of materials particularly suitable for gas-sensing applications. This work reports a facile wet-chemical synthesis of 2D tungsten oxide nanosheets by sonication of tungsten particles in an acidic environment and thermal annealing thereafter. The resultant product of large nanosheets with intrinsic substoichiometric properties is shown to be highly sensitive and selective to nitrogen dioxide (NO2) gas, which is a major pollutant. The strong synergy between polar NO2 molecules and tungsten oxide surface and also abundance of active surface sites on the nanosheets for molecule interactions contribute to the exceptionally sensitive and selective response. An extraordinary response factor of ∼30 is demonstrated to ultralow 40 parts per billion (ppb) NO2 at a relatively low operating temperature of 150 °C, within the physisorption temperature band for tungsten oxide. Selectivity to NO2 is demonstrated and the theory behind it is discussed. The structural, morphological and compositional characteristics of the synthesised and annealed materials are extensively characterised and electronic band structures are proposed. The demonstrated 2D tungsten oxide based sensing device holds the greatest promise for producing future commercial low-cost, sensitive and selective NO2 gas sensors.

12.
Science ; 358(6361): 332-335, 2017 10 20.
Article in English | MEDLINE | ID: mdl-29051372

ABSTRACT

Two-dimensional (2D) oxides have a wide variety of applications in electronics and other technologies. However, many oxides are not easy to synthesize as 2D materials through conventional methods. We used nontoxic eutectic gallium-based alloys as a reaction solvent and co-alloyed desired metals into the melt. On the basis of thermodynamic considerations, we predicted the composition of the self-limiting interfacial oxide. We isolated the surface oxide as a 2D layer, either on substrates or in suspension. This enabled us to produce extremely thin subnanometer layers of HfO2, Al2O3, and Gd2O3 The liquid metal-based reaction route can be used to create 2D materials that were previously inaccessible with preexisting methods. The work introduces room-temperature liquid metals as a reaction environment for the synthesis of oxide nanomaterials with low dimensionality.

14.
Nat Commun ; 8: 14482, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28211538

ABSTRACT

A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes.

15.
Nanoscale ; 8(36): 16276-16283, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27722706

ABSTRACT

Two-dimensional (2D) transition metal chalcogenides such as 2D MoS2 are considered prime candidate materials for the design of next generation optoelectronics. Functionalisation of these materials is considered to be a key step in tailoring their properties towards specific applications and unlocking their full potential. Here we present a van der Waals functionalisation strategy for creating MoS2 nanosheets decorated with free base phthalocyanine chromophores. The semiconducting sheets are found to intimately interact with these optoelectronically active chromophores, resulting in an electronic heterostructure that exhibits enhanced optoelectronic properties and exploitable charge transfer. We show that by utilising laterally confined MoS2 nanosheets, the conduction band of the semiconductor could be positioned between the chromophore's S1 and S2 states. Consequently, bidirectional photoinduced electron transfer processes are observed, with excitation of the functionalised nanosheet's semiconductor transition resulting in electron transfer to the phthalocyanine's LUMO, and excitation of the chromophore's S2 state leading to electron injection into the MoS2 conduction band. However, charge transfer from the dye's S1 transition to the MoS2 nanosheet is found to be thermodynamically unfavourable, resulting in intense radiative recombination. These findings may enable controlling and tuning the charge carrier density of semiconducting nanosheets via optical means through the exploitation of photoinduced electron transfer. Furthermore this work provides access to 2D semiconductor-hybrids with tailored absorption profiles and photoluminescence.

16.
Nanoscale ; 8(33): 15252-61, 2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27491834

ABSTRACT

Substoichiometric molybdenum disulphide (MoSx) nanosheets are successfully synthesised following a novel reductive route using hydrazine salts. The resulting two dimensional crystals are found to be highly monodispersed in thickness, forming exclusively 1.9 ± 0.2 nm thick bilayers. The lateral dimensions of the nanosheets are governed by the precursor bulk particle's size. Exploring a range of hydrazine derivatives with various degrees of steric hindrance leads to the conclusion that intercalation does not occur during the process and that exfoliation is instead facilitated by the reduction of Mo centres leading to the exfoliation of substoichiometric bilayers with distorted lattices. The lattice distortion is found to be persistent across all samples with XPS analysis pointing towards a S to Mo ratio of 1.2. The resulting material features an electronic bandgap of 2.1 eV, which is wider than that of pristine monolayer MoS2 with relatively longer radiative decay time.

17.
Nanoscale ; 8(24): 12258-66, 2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27263805

ABSTRACT

Developing scalable methods of growing two dimensional molybdenum disulphide (2D MoS2) with strong optical properties, on any desired substrates, is a necessary step towards industrial uptake of this material for optical applications. In this study, Si/SiO2 substrates were functionalised using self-assembled monolayers of three different aminosilanes with various numbers of amine groups and molecular lengths as underlayers for enhancing the adherence of the molybdenum precursor. The tetrahedral [MoS4](2-) anion groups from the molybdenum precursor were bonded on these silanised Si/SiO2 substrates afterwards. The substrates were then treated with a combined thermolysis and sulphurisation step. The results showed that silanisation of the substrates using the longest chains and the largest number of amine groups provided a good foundation to grow quasi 2D MoS2 made from adjacent flakes in a mosaic formation. Microscopy and spectroscopy investigations revealed that these quasi 2D MoS2 formed using this long chain aminosilane resulted in flakes with lateral dimensions in micron and submicron ranges composed of adjoining MoS2 pieces of 20 to 60 nm in lateral dimensions, dominantly made of 3 to 5 MoS2 fundamental layers. The obtained quasi 2D MoS2 shows a high internal quantum efficiency of 2.6% associated with the quantum confinement effect and high stoichiometry of the adjoining nanoflakes that form the structure of the sheets. The synthesis technique in this study is reliable and facile and offers a procedure to form large, scalable and patternable quasi 2D MoS2 sheets on various substrates with enhanced optical properties for practical applications.

18.
ACS Appl Mater Interfaces ; 8(5): 3482-93, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26795577

ABSTRACT

Few-layer two-dimensional (2D) molybdenum oxide nanoflakes are exfoliated using a grinding assisted liquid phase sonication exfoliation method. The sonication process is carried out in five different mixtures of water with both aprotic and protic solvents. We found that surface energy and solubility of mixtures play important roles in changing the thickness, lateral dimension, and synthetic yield of the nanoflakes. We demonstrate an increase in proton intercalation in 2D nanoflakes upon simulated solar light exposure. This results in substoichiometric flakes and a subsequent enhancement in free electron concentrations, producing plasmon resonances. Two plasmon resonance peaks associated with the thickness and the lateral dimension axes are observable in the samples, in which the plasmonic peak positions could be tuned by the choice of the solvent in exfoliating 2D molybdenum oxide. The extinction coefficients of the plasmonic absorption bands of 2D molybdenum oxide nanoflakes in all samples are found to be high (ε > 10(9) L mol(-1) cm(-1)). It is expected that the tunable plasmon resonances of 2D molybdenum oxide nanoflakes presented in this work can be used in future electronic, optical, and sensing devices.

19.
Nano Lett ; 16(2): 849-55, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26729449

ABSTRACT

By exploiting the very recent discovery of the piezoelectricity in odd-numbered layers of two-dimensional molybdenum disulfide (MoS2), we show the possibility of reversibly tuning the photoluminescence of single and odd-numbered multilayered MoS2 using high frequency sound wave coupling. We observe a strong quenching in the photoluminescence associated with the dissociation and spatial separation of electrons-holes quasi-particles at low applied acoustic powers. At the same applied powers, we note a relative preference for ionization of trions into excitons. This work also constitutes the first visual presentation of the surface displacement in one-layered MoS2 using laser Doppler vibrometry. Such observations are associated with the acoustically generated electric field arising from the piezoelectric nature of MoS2 for odd-numbered layers. At larger applied powers, the thermal effect dominates the behavior of the two-dimensional flakes. Altogether, the work reveals several key fundamentals governing acousto-optic properties of odd-layered MoS2 that can be implemented in future optical and electronic systems.

20.
ACS Nano ; 9(10): 10313-23, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26447741

ABSTRACT

Nitrogen dioxide (NO2) is a gas species that plays an important role in certain industrial, farming, and healthcare sectors. However, there are still significant challenges for NO2 sensing at low detection limits, especially in the presence of other interfering gases. The NO2 selectivity of current gas-sensing technologies is significantly traded-off with their sensitivity and reversibility as well as fabrication and operating costs. In this work, we present an important progress for selective and reversible NO2 sensing by demonstrating an economical sensing platform based on the charge transfer between physisorbed NO2 gas molecules and two-dimensional (2D) tin disulfide (SnS2) flakes at low operating temperatures. The device shows high sensitivity and superior selectivity to NO2 at operating temperatures of less than 160 °C, which are well below those of chemisorptive and ion conductive NO2 sensors with much poorer selectivity. At the same time, excellent reversibility of the sensor is demonstrated, which has rarely been observed in other 2D material counterparts. Such impressive features originate from the planar morphology of 2D SnS2 as well as unique physical affinity and favorable electronic band positions of this material that facilitate the NO2 physisorption and charge transfer at parts per billion levels. The 2D SnS2-based sensor provides a real solution for low-cost and selective NO2 gas sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...