Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 121(5 Pt1): EL218-22, 2007 May.
Article in English | MEDLINE | ID: mdl-17550206

ABSTRACT

This paper summarizes evidence of a nonlinear frequency dependence of attenuation for compressional waves in shallow-water waveguides with sandy sediment bottoms. Sediment attenuation is found consistent with alpha(f) = alpha(f(o)) x (f/f(o))n, n approximately 1.8 +/- 0.2 at frequencies less than 1 kHz in agreement with the theoretical expectation, (n = 2), of Biot [J. Acoust. Soc. Am. 28(2), 168-178, 1956]. For frequencies less than 10 kHz, the sediment layers, within meters of the water-sediment interface, appear to play a role in the attenuation that strongly depends on the power law. The accurate calculation of sound transmission in a shallow-water waveguide requires the depth-dependent sound speed, density, and frequency-dependent attenuation.


Subject(s)
Motion , Nonlinear Dynamics , Silicon Dioxide , Sound , Water , Data Interpretation, Statistical , Periodicity
SELECTION OF CITATIONS
SEARCH DETAIL
...