Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Medicina (Kaunas) ; 60(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38399568

ABSTRACT

Background and Objectives: Augmented reality head-mounted display (AR-HMD) is a novel technology that provides surgeons with a real-time CT-guided 3-dimensional recapitulation of a patient's spinal anatomy. In this case series, we explore the use of AR-HMD alongside more traditional robotic assistance in surgical spine trauma cases to determine their effect on operative costs and perioperative outcomes. Materials and Methods: We retrospectively reviewed trauma patients who underwent pedicle screw placement surgery guided by AR-HMD or robotic-assisted platforms at an academic tertiary care center between 1 January 2021 and 31 December 2022. Outcome distributions were compared using the Mann-Whitney U test. Results: The AR cohort (n = 9) had a mean age of 66 years, BMI of 29.4 kg/m2, Charlson Comorbidity Index (CCI) of 4.1, and Surgical Invasiveness Index (SII) of 8.8. In total, 77 pedicle screws were placed in this cohort. Intra-operatively, there was a mean blood loss of 378 mL, 0.78 units transfused, 398 min spent in the operating room, and a 20-day LOS. The robotic cohort (n = 13) had a mean age of 56 years, BMI of 27.1 kg/m2, CCI of 3.8, and SII of 14.2. In total, 128 pedicle screws were placed in this cohort. Intra-operatively, there was a mean blood loss of 432 mL, 0.46 units transfused units used, 331 min spent in the operating room, and a 10.4-day LOS. No significant difference was found between the two cohorts in any outcome metrics. Conclusions: Although the need to address urgent spinal conditions poses a significant challenge to the implementation of innovative technologies in spine surgery, this study represents an initial effort to show that AR-HMD can yield comparable outcomes to traditional robotic surgical techniques. Moreover, it highlights the potential for AR-HMD to be readily integrated into Level 1 trauma centers without requiring extensive modifications or adjustments.


Subject(s)
Augmented Reality , Spinal Fusion , Surgery, Computer-Assisted , Humans , Aged , Middle Aged , Surgery, Computer-Assisted/methods , Retrospective Studies , Fluoroscopy/methods , Spinal Fusion/methods
2.
Oper Neurosurg (Hagerstown) ; 25(5): 469-477, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37584482

ABSTRACT

BACKGROUND AND OBJECTIVE: Rapid design and production of patient-specific 3-dimensional-printed implants (3DPIs) present a novel opportunity to restore the biomechanically demanding integrity of the lumbopelvic junction. We present a unique case of a 61-year-old patient with severe neuropathic spinal arthropathy (Charcot spine) who initially underwent a T4-to-sacrum spinal fusion. Massive bone destruction led to dissociation of his upper body from his pelvis and legs. Reconstruction of the spinopelvic continuity was planned with the aid of a personalized lumbosacral 3DPI. METHOD: Using high-resolution computed tomography scans, the custom 3DPI was made using additive titanium manufacturing. The unique 3DPI consisted of (1) a sacral platform with iliac screws, (2) modular corpectomy device with rigid connection to the sacral platform, and (3) anterior plate connection with screws for proximal fixation. The procedures to obtain compassionate use Food and Drug Administration approval were followed. The patient underwent debridement of a chronically open wound before undertaking the 3-stage reconstructive procedure. The custom 3DPI and additional instrumentation were inserted as part of a salvage rebuilding procedure. RESULTS: The chronology of the rapid implementation of the personalized sacral 3DPI from decision, design, manufacturing, Food and Drug Administration approval, and surgical execution lasted 28 days. The prosthesis was positioned in the defect according to the expected anatomic planes and secured using a screw-rod system and a vascularized fibular bone strut graft. The prosthesis provided an ideal repair of the lumbosacral junction and pelvic ring by merging spinal pelvic fixation, posterior pelvic ring fixation, and anterior spinal column fixation. CONCLUSION: To the best of our knowledge, this is the first case of a multilevel lumbar, sacral, and sacropelvic neuropathic (Charcot) spine reconstruction using a 3DPI sacral prosthesis. As the prevalence of severe spine deformities continues to increase, adoption of 3DPIs is becoming more relevant to offer personalized treatment for complex deformities.


Subject(s)
Joint Diseases , Sacrum , United States , Humans , Middle Aged , Sacrum/diagnostic imaging , Sacrum/surgery , Titanium , Pelvis , Bone Screws
3.
Bioeng Transl Med ; 7(2): e10283, 2022 May.
Article in English | MEDLINE | ID: mdl-35600639

ABSTRACT

Induced neural stem cells (iNSCs) have emerged as a promising therapeutic platform for glioblastoma (GBM). iNSCs have the innate ability to home to tumor foci, making them ideal carriers for antitumor payloads. However, the in vivo persistence of iNSCs limits their therapeutic potential. We hypothesized that by encapsulating iNSCs in the FDA-approved, hemostatic matrix FLOSEAL®, we could increase their persistence and, as a result, therapeutic durability. Encapsulated iNSCs persisted for 95 days, whereas iNSCs injected into the brain parenchyma persisted only 2 weeks in mice. Two orthotopic GBM tumor models were used to test the efficacy of encapsulated iNSCs. In the GBM8 tumor model, mice that received therapeutic iNSCs encapsulated in FLOSEAL® survived 30 to 60 days longer than mice that received nonencapsulated cells. However, the U87 tumor model showed no significant differences in survival between these two groups, likely due to the more solid and dense nature of the tumor. Interestingly, the interaction of iNSCs with FLOSEAL® appears to downregulate some markers of proliferation, anti-apoptosis, migration, and therapy which could also play a role in treatment efficacy and durability. Our results demonstrate that while FLOSEAL® significantly improves iNSC persistence, this alone is insufficient to enhance therapeutic durability.

4.
Tissue Eng Part A ; 27(13-14): 857-866, 2021 07.
Article in English | MEDLINE | ID: mdl-32907497

ABSTRACT

Engineered neural stem cells (NSCs) have recently emerged as a promising therapy. Acting as a tumor-homing drug-delivery system, NSCs migrate through brain tissue to seek out primary and invasive tumor foci. NSCs can deliver therapeutic agents, such as TNFα-related apoptosis-inducing ligand, directly to the tumor and suppress glioblastoma (GBM) in murine models. While the mainstays for evaluating NSC migration and efficacy have been two-dimensional chemotaxis assays and mouse models, these low-throughput and small-scale systems limit our ability to implant and track these cells for human translation. To circumvent these challenges, we developed a three-dimensional culture system using a matrix of poly-l-lactic acid 6100 microfibers suspended in agar. These bioinspired brain matrices were used to model tumor growth, NSC migration, and efficacy of NSC therapy at small and human scale. Kinetic fluorescent imaging confirmed growth of tumors in both small and human-sized bioinspired brain matrix. Tumors proliferated 50-fold and 3-fold for GBM and human metastatic breast cancer, respectively, over 7 days. We next explored the impact of tumor location on NSC migration. When NSCs were implanted 2 mm lateral from the tumor foci, NSCs colocalized with the GBM within 7 days. In models of multifocal disease, NSCs were found to colocalize with multiple tumors, preferentially migrating to tumor foci closest to the site of NSC implantation. Lastly, therapeutic NSCs were implanted at increasing distances (0, 2, 5, or 10 mm) laterally from GBM foci to investigate the effects of distance on NSC efficacy. Serial imaging showed reduced fluorescence at tumor sites, implicating GBM apoptosis across all distances. NSCs coinjected with tumor induced a near-complete response in <10 days, while NSCs implanted 10 mm laterally from the tumor induced a near-complete response by day 30. Lastly, GBM foci were established in each hemisphere of the model and control or therapeutic NSCs were implanted adjacent to tumor cells in the right hemisphere. Kinetic imaging showed that NSC therapy attenuated progression of GBM foci, while GBM cells treated with control NSC expanded rapidly over 21 days. In conclusion, we developed a new bioinspired model that supports growth of human brain cancer cells and enables rapid tracking of NSC therapy. Impact statement Tumor-homing and tumor-killing-engineered neural stem cell (NSC) therapies have shown immense promise in both preclinical and clinical trials. However, as cell therapies continue to evolve, cost-effective and high-throughput screening assays are needed to assess the proliferation, migration, and efficacy of these cells. In this study, we developed a bioinspired brain matrix for the evaluation of engineered NSCs. Importantly, this matrix is easy to fabricate, scalable, and allows for sterile real-time, noninvasive imaging using our custom bioreactor. We then utilized the bioinspired brain matrix system to answer key questions around the tumor-homing migration and efficacy of engineered NSC therapies that are challenging to address with traditional models.


Subject(s)
Brain Neoplasms , Glioblastoma , Neural Stem Cells , Animals , Apoptosis , Brain/diagnostic imaging , Brain Neoplasms/therapy , Glioblastoma/therapy , Mice
5.
Tissue Eng Part A ; 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33085922

ABSTRACT

Engineered neural stem cells (NSCs) have recently emerged as a promising therapy. Acting as a tumor-homing drug-delivery system, NSCs migrate through brain tissue to seek out primary and invasive tumor foci. NSCs can deliver therapeutic agents, such as TNFα-related apoptosis-inducing ligand, directly to the tumor and suppress glioblastoma (GBM) in murine models. While the mainstays for evaluating NSC migration and efficacy have been two-dimensional chemotaxis assays and mouse models, these low-throughput and small-scale systems limit our ability to implant and track these cells for human translation. To circumvent these challenges, we developed a three-dimensional culture system using a matrix of poly-l-lactic acid 6100 microfibers suspended in agar. These bioinspired brain matrices were used to model tumor growth, NSC migration, and efficacy of NSC therapy at small and human scale. Kinetic fluorescent imaging confirmed growth of tumors in both small and human-sized bioinspired brain matrix. Tumors proliferated 50-fold and 3-fold for GBM and human metastatic breast cancer, respectively, over 7 days. We next explored the impact of tumor location on NSC migration. When NSCs were implanted 2 mm lateral from the tumor foci, NSCs colocalized with the GBM within 7 days. In models of multifocal disease, NSCs were found to colocalize with multiple tumors, preferentially migrating to tumor foci closest to the site of NSC implantation. Lastly, therapeutic NSCs were implanted at increasing distances (0, 2, 5, or 10 mm) laterally from GBM foci to investigate the effects of distance on NSC efficacy. Serial imaging showed reduced fluorescence at tumor sites, implicating GBM apoptosis across all distances. NSCs coinjected with tumor induced a near-complete response in <10 days, while NSCs implanted 10 mm laterally from the tumor induced a near-complete response by day 30. Lastly, GBM foci were established in each hemisphere of the model and control or therapeutic NSCs were implanted adjacent to tumor cells in the right hemisphere. Kinetic imaging showed that NSC therapy attenuated progression of GBM foci, while GBM cells treated with control NSC expanded rapidly over 21 days. In conclusion, we developed a new bioinspired model that supports growth of human brain cancer cells and enables rapid tracking of NSC therapy. Impact statement Tumor-homing and tumor-killing-engineered neural stem cell (NSC) therapies have shown immense promise in both preclinical and clinical trials. However, as cell therapies continue to evolve, cost-effective and high-throughput screening assays are needed to assess the proliferation, migration, and efficacy of these cells. In this study, we developed a bioinspired brain matrix for the evaluation of engineered NSCs. Importantly, this matrix is easy to fabricate, scalable, and allows for sterile real-time, noninvasive imaging using our custom bioreactor. We then utilized the bioinspired brain matrix system to answer key questions around the tumor-homing migration and efficacy of engineered NSC therapies that are challenging to address with traditional models.

6.
PLoS One ; 13(7): e0198596, 2018.
Article in English | MEDLINE | ID: mdl-29990322

ABSTRACT

BACKGROUND: Cytotoxic neural stem cells (NSCs) have emerged as a promising treatment for Medulloblastoma (MB), the most common malignant primary pediatric brain tumor. The lack of accurate pre-clinical models incorporating surgical resection and tumor recurrence limits advancement in post-surgical MB treatments. Using cell lines from two of the 5 distinct MB molecular sub-groups, in this study, we developed an image-guided mouse model of MB surgical resection and investigate intra-cavity NSC therapy for post-operative MB. METHODS: Using D283 and Daoy human MB cells engineered to express multi-modality optical reporters, we created the first image-guided resection model of orthotopic MB. Brain-derived NSCs and novel induced NSCs (iNSCs) generated from pediatric skin were engineered to express the pro-drug/enzyme therapy thymidine kinase/ganciclovir, seeded into the post-operative cavity, and used to investigate intra-cavity therapy for post-surgical MB. RESULTS: We found that surgery reduced MB volumes by 92%, and the rate of post-operative MB regrowth increased 3-fold compared to pre-resection growth. Real-time imaging showed NSCs rapidly homed to MB, migrating 1.6-fold faster and 2-fold farther in the presence of tumors, and co-localized with MB present in the contra-lateral hemisphere. Seeding of cytotoxic NSCs into the post-operative surgical cavity decreased MB volumes 15-fold and extended median survival 133%. As an initial step towards novel autologous therapy in human MB patients, we found skin-derived iNSCs homed to MB cells, while intra-cavity iNSC therapy suppressed post-surgical tumor growth and prolonged survival of MB-bearing mice by 123%. CONCLUSIONS: We report a novel image-guided model of MB resection/recurrence and provide new evidence of cytotoxic NSCs/iNSCs delivered into the surgical cavity effectively target residual MB foci.


Subject(s)
Brain Neoplasms/therapy , Cell- and Tissue-Based Therapy/methods , Medulloblastoma/therapy , Neoplasm Recurrence, Local/prevention & control , Neural Stem Cells/transplantation , Surgery, Computer-Assisted/methods , Animals , Brain/pathology , Brain/surgery , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Cell Differentiation , Cell Movement , Disease Models, Animal , Enzyme Therapy/methods , Epithelial Cells/cytology , Ganciclovir/pharmacology , Humans , Injections, Intralesional , Medulloblastoma/mortality , Medulloblastoma/pathology , Medulloblastoma/surgery , Mice , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/surgery , Neural Stem Cells/cytology , Prodrugs/pharmacology , Skin/cytology , Survival Analysis , Thymidine Kinase/genetics , Thymidine Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...