Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 31(3): 411-5, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20965714

ABSTRACT

In this paper, the evolution of organic matter (OM) during composting of different mixtures of various organic wastes was assessed by means of chemical analyses and CPMAS (13)C NMR spectroscopy measured during composting. The trends of temperatures and C/N ratios supported the correct evolution of the processes. The CPMAS (13)C NMR spectra of all composting substrates indicated a reduction in carbohydrates and an increase in aromatic, phenolic, carboxylic and carbonylic C which suggested a preference by microorganisms for easily degradable C molecules. The presence of hardly degradable pine needles in one of the substrates accounted for the lowest increase in alkyl C and the lowest reduction in carbohydrates and carboxyl C as opposite to another substrate characterized by the presence of a highly degradable material such as spent yeast from beer production, which showed the highest increase of the alkyl C/O-alkyl C ratio. The highest increase of COOH deriving by the oxidative degradation of cellulose was shown by a substrate composed by about 50% of plant residues. The smallest increases in alkyl C/O-alkyl C ratio and in polysaccharides were associated to the degradation of proteins and lipids which are major components of sewage sludge. Results obtained were related to the different composition of fresh organic substrates and provided evidence of different OM evolution patterns as a function of the initial substrate composition.


Subject(s)
Organic Chemicals/analysis , Refuse Disposal/methods , Soil/chemistry , Carbon Isotopes , Electric Conductivity , Hydrogen-Ion Concentration , Italy , Magnetic Resonance Spectroscopy
2.
Bioresour Technol ; 101(21): 8232-6, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20594836

ABSTRACT

This research aimed at assessing the chemical changes occurring in DOM extracted from different composting substrates by means of (13)C CPMAS NMR spectroscopy. During composting a reduction of carbohydrates and an increase of aromatic, phenolic, carboxylic and carbonylic C were observed. The highest increase in alkyl C and the lowest increase in aromatic C were explained by the presence of hardly degradable pine needles in the substrate, whereas the highest reduction in carbohydrates and the highest increase of the alkyl C/O-alkyl C ratio were attributed to the presence of highly degradable materials such as spent yeast from beer production.


Subject(s)
Organic Chemicals/chemistry , Soil/analysis , Waste Products/analysis , Carbon/analysis , Electric Conductivity , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Nitrogen/analysis , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...