Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Braz J Chem Eng, v. 35, n. 2, p. 441-458
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2580

ABSTRACT

Baby Hamster Kidney cells (BHK-21) are commonly used in research and the biopharmaceutical industry. This work aimed to model the kinetic performance in batch operation mode of BHK-21 cells cultured in two stirred tank configurations using different dissolved oxygen concentrations and pH control strategies. Viable and dead cell concentrations, as well as glucose, glutamine, lactate and ammonium concentrations, were monitored. Statistical multiple linear regression, logistic equation and multiplicative Monod kinetic models were fitted. Statistical models for viable cells concentration as a function of nutrient and metabolite concentrations were significant (R2 >0.91). Logistic model parameters: intrinsic growth rate, cell density level in the medium and time for reaching maximum cell concentrations were within 0.061-0.083 h-1, 1.85-5.39 x 109 cell L-1 and 52-90 h ranges, respectively. A Monod-type model was satisfactorily fitted to the experimental data. Relative errors were lower than 10% for six monitored state variables in most of the assessed experimental conditions. The three models developed in this work can be used in bioprocesses involving BHK-21 with good fitting.

2.
Braz. J. Chem. Eng. ; 35(2): p. 441-458, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15622

ABSTRACT

Baby Hamster Kidney cells (BHK-21) are commonly used in research and the biopharmaceutical industry. This work aimed to model the kinetic performance in batch operation mode of BHK-21 cells cultured in two stirred tank configurations using different dissolved oxygen concentrations and pH control strategies. Viable and dead cell concentrations, as well as glucose, glutamine, lactate and ammonium concentrations, were monitored. Statistical multiple linear regression, logistic equation and multiplicative Monod kinetic models were fitted. Statistical models for viable cells concentration as a function of nutrient and metabolite concentrations were significant (R2 >0.91). Logistic model parameters: intrinsic growth rate, cell density level in the medium and time for reaching maximum cell concentrations were within 0.061-0.083 h-1, 1.85-5.39 x 109 cell L-1 and 52-90 h ranges, respectively. A Monod-type model was satisfactorily fitted to the experimental data. Relative errors were lower than 10% for six monitored state variables in most of the assessed experimental conditions. The three models developed in this work can be used in bioprocesses involving BHK-21 with good fitting.

3.
PLoS Negl Trop Dis ; 10(1): e0004325, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26730709

ABSTRACT

BACKGROUND: Snake envenoming is a significant public health problem in underdeveloped and developing countries. In sub-Saharan Africa, it is estimated that 90,000-400,000 envenomations occur each year, resulting in 3,500-32,000 deaths. Envenomings are caused by snakes from the Viperidae (Bitis spp. and Echis spp.) and Elapidae (Naja spp. and Dendroaspis spp.) families. The African continent has been suffering from a severe antivenom crisis and current antivenom production is only sufficient to treat 25% of snakebite cases. Our aim is to develop high-quality antivenoms against the main snake species found in Mozambique. METHODS: Adult horses primed with the indicated venoms were divided into 5 groups (B. arietans; B. nasicornis + B. rhinoceros; N. melanoleuca; N. mossambica; N. annulifera + D. polylepis + D. angusticeps) and reimmunized two times for antivenom production. Blood was collected, and plasma was separated and subjected to antibody purification using caprylic acid. Plasmas and antivenoms were subject to titration, affinity determination, cross-recognition assays and in vivo venom lethality neutralization. A commercial anti-Crotalic antivenom was used for comparison. RESULTS: The purified antivenoms exhibited high titers against B. arietans, B. nasicornis and B. rhinoceros (5.18 x 106, 3.60 x 106 and 3.50 x 106 U-E/mL, respectively) and N. melanoleuca, N. mossambica and N. annulifera (7.41 x 106, 3.07 x 106 and 2.60 x 106 U-E/mL, respectively), but lower titers against the D. angusticeps and D. polylepis (1.87 x 106 and 1.67 x 106 U-E/mL). All the groups, except anti-N. melanoleuca, showed significant differences from the anti-Crotalic antivenom (7.55 x 106 U-E/mL). The affinity index of all the groups was high, ranging from 31% to 45%. Cross-recognition assays showed the recognition of proteins with similar molecular weight in the venoms and may indicate the possibility of paraspecific neutralization. The three monospecific antivenoms were able to provide in vivo protection. CONCLUSION: Our results indicate that the anti-Bitis and anti-Naja antivenoms developed would be useful for treating snakebite envenomations in Mozambique, although their effectiveness should to be increased. We propose instead the development of monospecific antivenoms, which would serve as the basis for two polyvalent antivenoms, the anti-Bitis and anti-Elapidae. Polyvalent antivenoms represent an increase in treatment quality, as they have a wider range of application and are easier to distribute and administer to snake envenoming victims.


Subject(s)
Antivenins/immunology , Horses/immunology , Immunoglobulin G/immunology , Snake Venoms/immunology , Snakes/classification , Animals , Antivenins/classification , Mozambique , Snake Venoms/classification
4.
Cytotechnology ; 68(1): 95-104, 2016 Jan.
Article in English | MEDLINE | ID: mdl-24942228

ABSTRACT

Mammalian cells are the most frequently used hosts for biopharmaceutical proteins manufacturing. Inoculum quality is a key element for establishing an efficient bioconversion process. The main objective in inoculation expansion process is to generate large volume of viable cells in the shortest time. The aim of this paper was to optimize the inoculum preparation stage of baby hamster kidney (BHK)-21 cells for suspension cultures in benchtop bioreactors, by means of a combination of static and agitated culture systems. Critical parameters for static (liquid column height: 5, 10, 15 mm) and agitated (working volume: 35, 50, 65 mL, inoculum volume percentage: 10, 30 % and agitation speed: 25, 60 rpm) cultures were study in T-flask and spinner flask, respectively. The optimal liquid column height was 5 mm for static culture. The maximum viable cell concentration in spinner flask cultures was reached with 50 mL working volume and the inoculum volume percentage was not significant in the range under study (10-30 %) at 25 rpm agitation. Agitation speed at 60 rpm did not change the main kinetic parameters with respect to those observed for 25 rpm. These results allowed for a schedule to produce more than 4 × 10(9) BHK-21 cells from 4 × 10(6) cells in 13 day with 1,051 mL culture medium.

5.
Cytotechnology ; 68(1): p. 95-104, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14055

ABSTRACT

Mammalian cells are the most frequently used hosts for biopharmaceutical proteins manufacturing. Inoculum quality is a key element for establishing an efficient bioconversion process. The main objective in inoculation expansion process is to generate large volume of viable cells in the shortest time. The aim of this paper was to optimize the inoculum preparation stage of baby hamster kidney (BHK)-21 cells for suspension cultures in benchtop bioreactors, by means of a combination of static and agitated culture systems. Critical parameters for static (liquid column height: 5, 10, 15 mm) and agitated (working volume: 35, 50, 65 mL, inoculum volume percentage: 10, 30 % and agitation speed: 25, 60 rpm) cultures were study in T-flask and spinner flask, respectively. The optimal liquid column height was 5 mm for static culture. The maximum viable cell concentration in spinner flask cultures was reached with 50 mL working volume and the inoculum volume percentage was not significant in the range under study (10-30 %) at 25 rpm agitation. Agitation speed at 60 rpm did not change the main kinetic parameters with respect to those observed for 25 rpm. These results allowed for a schedule to produce more than 4 x 10(9) BHK-21 cells from 4 x 10(6) cells in 13 day with 1,051 mL culture medium


Subject(s)
Cell Biology , Biotechnology
6.
PLoS Negl. Trop. Dis ; 10(1): e0004325, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14001

ABSTRACT

Background Snake envenoming is a significant public health problem in underdeveloped and developing countries. In sub-Saharan Africa, it is estimated that 90,000-400,000 envenomations occur each year, resulting in 3,500-32,000 deaths. Envenomings are caused by snakes from the Viperidae (Bitis spp. and Echis spp.) and Elapidae (Naja spp. and Dendroaspis spp.) families. The African continent has been suffering from a severe antivenom crisis and current antivenom production is only sufficient to treat 25% of snakebite cases. Our aim is to develop high-quality antivenoms against the main snake species found in Mozambique. Methods Adult horses primed with the indicated venoms were divided into 5 groups (B. arietans; B. nasicornis + B. rhinoceros; N. melanoleuca; N. mossambica; N. annulifera + D. polylepis + D. angusticeps) and reimmunized two times for antivenom production. Blood was collected, and plasma was separated and subjected to antibody purification using caprylic acid. Plasmas and antivenoms were subject to titration, affinity determination, cross-recognition assays and in vivo venom lethality neutralization. A commercial anti-Crotalic antivenom was used for comparison. Results The purified antivenoms exhibited high titers against B. arietans, B. nasicornis and B. rhinoceros (5.18 x 10(6), 3.60 x 10(6) and 3.50 x 10(6) U-E/mL, respectively) and N. melanoleuca, N. mossambica and N. annulifera (7.41 x 10(6), 3.07 x 10(6) and 2.60 x 10(6) U-E/mL, respectively), but lower titers against the D. angusticeps and D. polylepis (1.87 x 10(6) and 1.67 x 10(6) U-E/mL). All the groups, except anti-N. melanoleuca, showed significant differences from the anti-Crotalic antivenom (7.55 x 10(6) U-E/mL). The affinity index of all the groups was high, ranging from 31% to 45%. Cross-recognition assays showed the recognition of proteins with similar molecular weight in the venoms and may indicate the possibility of paraspecific neutralization. The three monospecific antivenoms were able to provide in vivo protection. Conclusion Our results indicate that the anti-Bitis and anti-Naja antivenoms developed would be useful for treating snakebite envenomations in Mozambique, although their effectiveness should to be increased. We propose instead the development of monospecific antivenoms, which would serve as the basis for two polyvalent antivenoms, the anti-Bitis and anti-Elapidae. Polyvalent antivenoms represent an increase in treatment quality, as they have a wider range of application and are easier to distribute and administer to snake envenoming victims


Subject(s)
Allergy and Immunology , Toxicology
7.
Biotechnol Lett ; 37(6): 1153-63, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25700821

ABSTRACT

OBJECTIVE: To assess the expression of rabies virus G-glycoprotein (RVGP) expression using Semliki Forest virus as a vector in combination with BHK-21 cells cultured in suspension. RESULTS: A multilevel factorial design was used to quantify effects of temperature (33-37 °C), fresh medium addition after the viral adsorption step (100-200 % with respect to the initial cell suspension volume before infection) and harvest time (8-40 h) on RVGP production. Experimental runs were performed in 24-well cell culture plates at a multiplicity of infection (MOI) of 16. An additional experiment in spinner-flask was performed at MOI of 9, using the optimal conditions determined in cell culture plates. Values for temperature, fresh medium addition and harvest time of 33 °C, 100 % and 16 h, respectively, ensured the optimal RVGP production in culture plates. The volumetric yield (239 ng ml(-1)) in these conditions was higher than that reported previously for adherent cell culture. In spinner-flasks, the volumetric yield was improved (559 ng ml(-1)). CONCLUSION: These results establish the basis for designing bioprocess to produce RVGP.


Subject(s)
Antigens, Viral/biosynthesis , Bioreactors , Epithelial Cells/metabolism , Gene Expression , Glycoproteins/biosynthesis , Viral Envelope Proteins/biosynthesis , Animals , Antigens, Viral/genetics , Cell Line , Cricetinae , Culture Media/chemistry , Genetic Vectors , Glycoproteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Semliki forest virus/genetics , Temperature , Time Factors , Viral Envelope Proteins/genetics
8.
Bioprocess Biosyst Eng ; 38(6): 1045-54, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25552348

ABSTRACT

Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.


Subject(s)
Biological Products , Bioreactors , Neural Networks, Computer , Spectrophotometry, Ultraviolet/methods , Animals , Cell Line , Cricetinae , Culture Media , Hydrogen-Ion Concentration
9.
Biotechnol Prog ; 31(2): 532-40, 2015.
Article in English | MEDLINE | ID: mdl-25627917

ABSTRACT

This work aimed to compare the predictive capacity of empirical models, based on the uniform design utilization combined to artificial neural networks with respect to classical factorial designs in bioprocess, using as example the rabies virus replication in BHK-21 cells. The viral infection process parameters under study were temperature (34°C, 37°C), multiplicity of infection (0.04, 0.07, 0.1), times of infection, and harvest (24, 48, 72 hours) and the monitored output parameter was viral production. A multilevel factorial experimental design was performed for the study of this system. Fractions of this experimental approach (18, 24, 30, 36 and 42 runs), defined according uniform designs, were used as alternative for modelling through artificial neural network and thereafter an output variable optimization was carried out by means of genetic algorithm methodology. Model prediction capacities for all uniform design approaches under study were better than that found for classical factorial design approach. It was demonstrated that uniform design in combination with artificial neural network could be an efficient experimental approach for modelling complex bioprocess like viral production. For the present study case, 67% of experimental resources were saved when compared to a classical factorial design approach. In the near future, this strategy could replace the established factorial designs used in the bioprocess development activities performed within biopharmaceutical organizations because of the improvements gained in the economics of experimentation that do not sacrifice the quality of decisions.


Subject(s)
Biotechnology/methods , Neural Networks, Computer , Virus Cultivation/methods , Virus Replication/physiology , Animals , Cell Line , Cricetinae , Rabies virus/isolation & purification , Rabies virus/physiology , Research Design
10.
Biotechnol Prog ; 30(1): 241-8, 2014.
Article in English | MEDLINE | ID: mdl-24665480

ABSTRACT

Monitoring mammalian cell culture with UV­vis spectroscopy has not been widely explored. The aim of this work was to calibrate Partial Least Squares (PLS) models from off-line UV­vis spectral data in order to predict some nutrients and metabolites, as well as viable cell concentrations for mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Spectra of samples taken from batches performed at different dissolved oxygen concentrations (10, 30, 50, and 70% air saturation), in two bioreactor configurations and with two strategies to control pH were used to calibrate and validate PLS models. Glutamine, glutamate, glucose, and lactate concentrations were suitably predicted by means of this strategy. Especially for glutamine and glucose concentrations, the prediction error averages were lower than 0.5060.10 mM and 2.2160.16 mM, respectively. These values are comparable with those previously reported using near infrared and Raman spectroscopy in conjunction with PLS. However, viable cell concentration models need to be improved. The present work allows for UV­vis at-line sensor development, decrease cost related to nutrients and metabolite quantifications and establishment of fed-batch feeding schemes.


Subject(s)
Bioreactors , Cell Culture Techniques/methods , Cell Proliferation , Spectrophotometry, Ultraviolet/methods , Animals , Calibration , Cell Line , Culture Media/chemistry , Culture Media/metabolism , Least-Squares Analysis , Multivariate Analysis , Oxygen/analysis , Oxygen/metabolism , Sodium Bicarbonate/analysis , Sodium Bicarbonate/metabolism
11.
Cytotechnology ; 66(4): 605-17, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23846480

ABSTRACT

This work focused on determining the effect of dissolved oxygen concentration (DO) on growth and metabolism of BHK-21 cell line (host cell for recombinant proteins manufacturing and viral vaccines) cultured in two stirred tank bioreactors with different aeration-homogenization systems, as well as pH control mode. BHK-21 cell line adapted to single-cell suspension was cultured in Celligen without aeration cage (rotating gas-sparger) and Bioflo 110, at 10, 30 and 50 % air saturation (impeller for gas dispersion from sparger-ring). The pH was controlled at 7.2 as far as it was possible with gas mixtures. In other runs, at 30 and 50 % (DO) in Bioflo 110, the cells grew at pH controlled with CO2 and NaHCO3 solution. Glucose, lactate, glutamine, and ammonium were quantified by enzymatic methods. Cell concentration, size and specific oxygen consumption were also determined. When NaHCO3 solution was not used, the optimal DOs were 10 and 50 % air saturation for Celligen and Bioflo 110, respectively. In this condition maximum cell concentrations were higher than 4 × 10(6) cell/mL. An increase in maximum cell concentration of 36 % was observed in batch carried out at 30 % air saturation in a classical stirred tank bioreactor (Bioflo 110) with base solution addition. The optimal parameters defined in this work allow for bioprocess developing of viral vaccines, transient protein expression and viral vector for gene therapy based on BHK-21 cell line in two stirred tank bioreactors with different agitation-aeration systems.

14.
PLoS One ; 8(11): e79971, 2013.
Article in English | MEDLINE | ID: mdl-24236166

ABSTRACT

Victims of massive bee attacks become extremely ill, presenting symptoms ranging from dizziness and headache to acute renal failure and multiple organ failure that can lead to death. Previous attempts to develop specific antivenom to treat these victims have been unsuccessful. We herein report a F(ab)(´)(2)-based antivenom raised in horse as a potential new treatment for victims of multiple bee stings. The final product contains high specific IgG titers and is effective in neutralizing toxic effects, such as hemolysis, cytotoxicity and myotoxicity. The assessment of neutralization was revised and hemolysis, the primary toxic effect of these stings, was fully neutralized in vivo for the first time.


Subject(s)
Antivenins/immunology , Bee Venoms/immunology , Bees/immunology , Animals , Antibodies, Neutralizing/immunology , Antivenins/toxicity , Dose-Response Relationship, Immunologic , Hemolysis/immunology , Horses , Immunization , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin G/immunology , Male , Mice , Neutralization Tests
19.
Toxicon ; 57(7-8): 1093-100, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21549738

ABSTRACT

Infections caused by Corynebacterium diphtheriae frequently induce situations in which very small doses of antigens injected intradermally can cause strong inflammatory reactions. This bacterium secretes the diphtheria toxin (DT), a virulence factor that can be lethal to the human organism at doses below 0.1 µg/kg of body weight. The present work proposes alternative methods of DT purification using affinity chromatography and of DT detoxification through conjugating with the polymer methoxypolyethylene glycol activated (mPEG). Tests were performed to evaluate: the formation of edemas and the presence of dermonecrotic activity, in vitro cytotoxicity to Vero cells, the neutralizing activity of serum from guinea pigs immunized with the diphtheria toxoid inactivated with mPEG, and the immunogenic activity of the purified and modified toxin. The results indicated that purification with Blue Sepharose was an efficient method, yielding antigen purity equivalent to 2600 Lf/mg of protein nitrogen. The modification of the Purified Toxin with mPEG did not result in the formation of edema or necrosis although it was immunogenic and stimulated the formation of antibodies that could neutralize the Purified Toxin. The toxoid obtained from the purified toxin maintained its immunogenic characteristics, inducing antibodies with neutralizing activity; edema and necrosis were still observed, however.


Subject(s)
Chromatography, Affinity/methods , Cytotoxins/isolation & purification , Diphtheria Toxin/isolation & purification , Sorption Detoxification/methods , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Cytotoxins/chemistry , Diphtheria/drug therapy , Diphtheria/metabolism , Diphtheria/pathology , Diphtheria Toxin/chemistry , Diphtheria Toxoid/immunology , Diphtheria Toxoid/pharmacology , Dose-Response Relationship, Drug , Guinea Pigs , Humans , Neutralization Tests , Polyethylene Glycols/chemistry , Sepharose/analogs & derivatives , Sepharose/chemistry , Time Factors , Vero Cells
20.
Toxicon ; 57(7/8): 1093-1100, Apr 29, 2011.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1068277

ABSTRACT

Infections caused by Corynebacterium diphtheriae frequently induce situations in which very small doses of antigens injected intradermally can cause strong inflammatory reactions. This bacterium secretes the diphtheria toxin (DT), a virulence factor that can be lethal to the human organism at doses below 0.1 mg/kg of body weight. The present work proposes alternative methods of DT purification using affinity chromatography and of DT detoxification through conjugating with the polymer methoxypolyethylene glycol activated(mPEG). Tests were performed to evaluate: the formation of edemas and the presence of dermonecrotic activity, in vitro cytotoxicity to Vero cells, the neutralizing activity of serum from guinea pigs immunized with the diphtheria toxoid inactivated with mPEG, and the immunogenic activity of the purified and modified toxin. The results indicated that purification with Blue Sepharose was an efficient method, yielding antigen purity equivalent to 2600 Lf/mg of protein nitrogen. The modification of the Purified Toxin with mPEG did not result in the formation of edema or necrosis although it was immunogenic and stimulated the formation of antibodies that could neutralize the Purified Toxin. The toxoidobtained from the purified toxin maintained its immunogenic characteristics, inducing antibodies with neutralizing activity; edema and necrosis were still observed, however.


Subject(s)
Guinea Pigs , Diphtheria/microbiology , Diphtheria Toxin/isolation & purification , Diphtheria Toxin/toxicity , Diphtheria Toxoid/administration & dosage , Diphtheria Toxoid/therapeutic use , Chromatography, Affinity/methods , Toxicity Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL