Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 34: 289-293, 2017 01.
Article in English | MEDLINE | ID: mdl-27773248

ABSTRACT

We report on a liquid hydridosilane precursor ink prepared via the ultrasonically induced ring-opening polymerisation of cyclopentasilane (Si5H10) without irradiation by ultraviolet light. The sonication is carried out in N2 atmosphere at temperatures between 20 and 75°C. We use size exclusion chromatography (SEC) to show polymer growth and estimate molecular mass with increasing sonication time. In combination with UV-vis transmission measurements, further SEC analysis is used to compare solutions subjected to either purely thermal or ultrasonic treatment at the same process temperature and for the same duration. Our findings provide strong evidence showing that the initiation of the polymerisation is sonocatalytic in nature and not thermic due to the macroscopic temperature of the solution. The liquid precursor is used to produce homogeneous hydrogenated amorphous silicon (a-Si:H) thin films via spin coating and pyrolytic conversion. The optoelectronic properties of the films are subsequently improved by hydrogen radical treatment. Fourier transform infrared spectroscopy (FTIR) is used to determine a compact film morphology and electrical conductivity measurements show that the layers attain a light-to-dark photosensitivity ratio of 2×103 making them suitable for application in optoelectronic devices.

2.
Nanoscale ; 8(44): 18726-18733, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27787533

ABSTRACT

Light trapping in crystalline silicon (c-Si) solar cells is an essential building block for high efficiency solar cells targeting low material consumption and low costs. In this study, we present the successful implementation of highly efficient light-trapping back contacts, subsequent to the passivation of Si heterojunction solar cells. The back contacts are realized by texturing an amorphous silicon layer with a refractive index close to the one of crystalline silicon at the back side of the silicon wafer. As a result, decoupling of optically active and electrically active layers is introduced. In the long run, the presented concept has the potential to improve light trapping in monolithic Si multijunction solar cells as well as solar cell configurations where texturing of the Si absorber surfaces usually results in a deterioration of the electrical properties. As part of this study, different light-trapping textures were applied to prototype silicon heterojunction solar cells. The best path length enhancement factors, at high passivation quality, were obtained with light-trapping textures based on randomly distributed craters. Comparing a planar reference solar cell with an absorber thickness of 280 µm and additional anti-reflection coating, the short-circuit current density (JSC) improves for a similar solar cell with light-trapping back contact. Due to the light trapping back contact, the JSC is enhanced around 1.8 mA cm-2 to 38.5 mA cm-2 due to light trapping in the wavelength range between 1000 nm and 1150 nm.

3.
J Phys Condens Matter ; 24(30): 305801, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22763583

ABSTRACT

After irradiation of hydrogenated amorphous and microcrystalline silicon (a-Si:H and µc-Si:H) with 2 MeV electrons at 100 K, we observe satellite-like components close to the dominating electron spin resonance (ESR) signal of these materials. The satellites overlap with the commonly observed dangling bond resonance and are proposed to originate from a hyperfine interaction with the nuclear magnetic moment of hydrogen atoms in a-Si:H and µc-Si:H. Our present study is focused on the verification of this hypothesis. Equivalent hydrogenated and deuterated a-/µc-Si:H/D materials have been investigated with ESR before and after 2 MeV electron bombardment. From the difference between ESR spectra of hydrogenated and deuterated samples we identify the doublet structure in the ESR spectra as a hyperfine pattern of hydrogen-related paramagnetic centers. The observations of H-related paramagnetic centers in a-/µc-Si:H are of particular interest in view of metastability models of a-Si:H, which include H-related complexes as precursors for the stabilization of the metastable Si dangling bonds. The nature of the observed center is discussed in the light of known H-related complexes in crystalline Si and suggested H-related dangling bonds in a-Si:H.

4.
Opt Express ; 18 Suppl 3: A335-41, 2010 Sep 13.
Article in English | MEDLINE | ID: mdl-21165064

ABSTRACT

Using rigorous diffraction theory we investigate the scattering properties of various random textures currently used for photon management in thin-film solar cells. We relate the haze and the angularly resolved scattering function of these cells to the enhancement of light absorption. A simple criterion is derived that provides an explanation why certain textures operate more beneficially than others. Using this criterion we propose a generic surface profile that outperforms the available substrates. This work facilitates the understanding of the effect of randomly textured surfaces and provides guidelines towards their optimization.

5.
Phys Rev Lett ; 88(7): 075508, 2002 Feb 18.
Article in English | MEDLINE | ID: mdl-11863913

ABSTRACT

The occurrence of metallic conductivity in SrTiO3 single crystals is reported for reduction under low partial pressure of oxygen at 800 degrees C. This transition is shown to result from the formation of a high concentration of vacancy defects along a network of extended defects within the skin region. A self-healing phenomenon is observed for progressive reduction which causes the concentration of initially introduced defects to decrease in the course of heat treatment and leads to a breakdown of the metallic conductivity as well as a substantial loss of optical subgap absorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...