Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202401403, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818578

ABSTRACT

Our society largely relies on inorganic semiconductor devices which are, so far, fabricated using expensive and complex processes requiring ultra-high vacuum equipment. Here we report on the possibility of growing a p-n junction taking advantage of electrochemical processes based on the use of aqueous solutions. The growth of the junction has been carried out using the Electrochemical Atomic Layer Deposition (E-ALD) technique, which allowed to sequentially deposit two different semiconductors, CdS and Cu2S, on an Ag(111) substrate, in a single procedure. The growth process was monitored in situ by Surface X-Ray Diffraction (SXRD) and resulted in the fabrication of a thin double-layer structure with a high degree of crystallographic order and a well-defined interface. The high-performance electrical characteristics of the device were analysed ex-situ and show the characteristic feature of a diode.

2.
Langmuir ; 39(7): 2676-2691, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36757323

ABSTRACT

The effect of lipid composition on models of the inner leaflet of mammalian cell membranes has been investigated. Grazing incidence X-ray diffraction and X-ray and neutron reflectivity have been used to characterize lipid packing and solvation, while electrochemical and infrared spectroscopic methods have been employed to probe phase behavior in an applied electric field. Introducing a small quantity of the anionic lipid dimyristoylphosphatidylserine (DMPS) into bilayers of zwitterionic dimyristoylphosphatidylethanolamine (DMPE) results in a significant change in the bilayer response to an applied field: the tilt of the hydrocarbon chains increases before returning to the original tilt angle on detachment of the bilayer. Equimolar mixtures, with slightly closer chain packing, exhibit a similar but weaker response. The latter also tend to incorporate more solvent during this electrochemical phase transition, at levels similar to those of pure DMPS. Reflectivity measurements reveal greater solvation of lipid layers for DMPS > 30 mol %, matching the greater propensity for DMPS-rich bilayers to incorporate water. Taken together, the data indicate that the range of 10-35 mol % DMPS provides optimum bilayer properties (in flexibility and function as a barrier), which may explain why the DMPS content of cell membranes tends to be found within this range.


Subject(s)
Lipid Bilayers , Mammals , Animals , Lipid Bilayers/chemistry , Cell Membrane , Spectrophotometry, Infrared , Membranes , X-Ray Diffraction
3.
Nanoscale Adv ; 4(11): 2452-2467, 2022 May 31.
Article in English | MEDLINE | ID: mdl-36134135

ABSTRACT

A high-throughput method for the fabrication of ordered arrays of Au nanoparticles is presented. It is based on pulsed electrodeposition into porous anodic alumina templates. In contrast to many synthesis routes, it is cyanide-free, prior separation of the alumina template from the aluminium substrate is not required, and the use of contaminating surfactants/capping agents often found in colloidal synthesis is avoided. The aspect ratio of the nanoparticles can also be tuned by selecting an appropriate electrodeposition time. We show how to fabricate arrays of nanoparticles, both with branched bases and with hemispherical bases. Furthermore, we compare the different morphologies produced with electron microscopies and grazing-incidence synchrotron X-ray diffraction. We find the nanoparticles are polycrystalline in nature and are compressively strained perpendicular to the direction of growth, and expansively strained along the direction of growth. We discuss how this can produce dislocations and twinning defects that could be beneficial for catalysis.

4.
Nanoscale ; 14(3): 680-690, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34935835

ABSTRACT

The selection of the polarity of ZnO nanowires grown by chemical bath deposition offers a great advantage for their integration into a wide variety of engineering devices. However, the nucleation process of ZnO nanowires and its dependence on their polarity is still unknown despite its importance for optimizing their morphology and properties and thus to enhance the related device performances. To tackle this major issue, we combine an in situ analysis of the nucleation process of O- and Zn-polar ZnO nanowires on O- and Zn-polar ZnO single crystals, respectively, using synchrotron radiation-based grazing incidence X-ray diffraction with ex situ transmission and scanning electron microscopy. We show that the formation of ZnO nanowires obeys three successive phases from the induction, through nucleation to growth phases. The characteristics of each phase, including the nucleation temperature, the shape and dimension of nuclei, as well as their radial and axial development are found to depend on the polarity of ZnO nanowires. A comprehensive description reporting the dominant physicochemical processes in each phase and their dependence on the polarity of ZnO nanowires is presented, revisiting their formation process step-by-step. These findings provide a deeper understanding of the phenomena at work during the growth of ZnO nanowires by chemical bath deposition and open the perspective to develop a more accurate control of their properties at each step of the formation process.

5.
J Appl Crystallogr ; 54(Pt 4): 1140-1152, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34429722

ABSTRACT

X-ray diffractometers primarily designed for surface X-ray diffraction are often used to measure the diffraction from powders, textured materials and fiber-texture samples in 2θ scans. Unlike in high-energy powder diffraction, only a fraction of the powder rings is typically measured, and the data consist of many detector images across the 2θ range. Such diffractometers typically scan in directions not possible on a conventional laboratory diffractometer, which gives enhanced control of the scattering vector relative to the sample orientation. There are, however, very few examples where the measured intensity is directly used, such as for profile/Rietveld refinement, as is common with other powder diffraction data. Although the underlying physics is known, converting the data is time consuming and the appropriate corrections are dispersed across several publications, often not with powder diffraction in mind. This paper presents the angle calculations and correction factors required to calculate meaningful intensities for 2θ scans with a (2 + 3)-type diffractometer and an area detector. Some of the limitations with respect to texture, refraction and instrumental resolution are also discussed, as is the kind of information that one can hope to obtain.

6.
J Phys Condens Matter ; 33(12)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33339007

ABSTRACT

This work reports about a novel approach for investigating surface processes during the early stages of galvanic corrosion of stainless steelin situby employing ultra-thin films and synchrotron x-radiation. Characterized by x-ray techniques and voltammetry, such films, sputter deposited from austenitic steel, were found representing useful replicas of the target material. Typical for stainless steel, the surface consists of a passivation layer of Fe- and Cr-oxides, a couple of nm thick, that is depleted of Ni. Films of ≈4 nm thickness were studiedin situin an electrochemical cell under potential control (-0.6 to +0.8 V vs Ag/AgCl) during exposure to 0.1 M KCl. Material transport was recorded with better than 1/10 monolayer sensitivity by x-ray spectroscopy. Leaching of Fe was observed in the cathodic range and the therefor necessary reduction of Fe-oxide appears to be accelerated by atomic hydrogen. Except for minor leaching, reduction of Ni, while expected from Pourbaix diagram, was not observed until at a potential of about +0.8 V Cr-oxide was removed from the steel film. After couple of minutes exposure at +0.8 V, the current in the electrochemical cell revealed a rapid pitting event that was simultaneously monitored by x-ray spectroscopy. Continuous loss of Cr and Ni was observed during the induction time leading to the pitting, suggesting a causal connection with the event. Finally, a spectroscopic image of a pit was recordedex situwith 50 nm lateral and 1 nm depth resolution by soft x-ray scanning absorption microscopy at the Fe L2,3-edges by using a 80 nm film on a SiN membrane, which is further demonstrating the usefulness of thin films for corrosion studies.

7.
J Colloid Interface Sci ; 573: 204-214, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32278951

ABSTRACT

The use of inorganic nanoparticles in biomedical and biotechnological applications requires a molecular-level understanding of interactions at nano-bio interfaces, such as cell membranes. Several recent reports have shown that gold nanoparticles (AuNP), in the presence of fluid lipid bilayers, aggregate at the lipid/aqueous interface, but the precise origin of this phenomenon is still not fully understood. Here, by challenging synthetic lipid membranes with one of the most typical classes of nanomaterials, citrate-coated AuNP, we addressed the cooperative nature of their interaction at the interface, which leads to AuNP clustering. The ensemble of optical (UV-Vis absorbance), structural (small-angle neutron and X-ray scattering) and surface (X-ray reflectivity, quartz crystal microbalance, atomic force microscopy) results, is consistent with a mechanistic hypothesis, where the citrate-lipid ligand exchange at the interface is the molecular origin of a multiscale cooperative behavior, which ultimately leads to the formation of clusters of AuNP on the bilayer. This mechanism, fully consistent with the data reported so far in the literature for synthetic bilayers, would shed new light on the interaction of engineered nanomaterials with biological membranes. The cooperative nature of ligand exchange at the AuNP-liposome interface, pivotal in determining clustering of AuNP, will have relevant implications for NP use in Nanomedicine, since NP will be internalized in cells as clusters, rather than as primary NP, with dramatic effects on their bioactivity.


Subject(s)
Gold/chemistry , Light , Lipid Bilayers/chemistry , Metal Nanoparticles/chemistry , Particle Size , Quartz Crystal Microbalance Techniques , Surface Properties
8.
J Colloid Interface Sci ; 570: 340-349, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32171928

ABSTRACT

HYPOTHESIS: Extracellular Vesicles (EVs) are natural nanosized lipid vesicles involved in most intercellular communication pathways. Given their nature, they represent natural cell membrane models, with intermediate complexity between real and synthetic lipid membranes. Here we compare EVs-derived (EVSLB) and synthetic Supported Lipid Bilayers (SLBs) in the interaction with cationic superparamagnetic iron oxide nanoparticles (SPIONs). The aim is twofold: (i) exploit SPIONs as nanometric probes to investigate the features of EVSLBs as novel biogenic platforms; (ii) contribute at improving the knowledge on the behavior of SPIONs with biological interfaces. EXPERIMENTS: Quartz Crystal Microbalance, X-ray Reflectivity, Grazing-incidence Small-angle X-ray Scattering, Atomic Force Microscopy, Confocal Microscopy data on SPIONs-EVSLB were systematically compared to those on SPIONs challenging synthetic SLBs, taken as references. FINDINGS: The ensemble of experimental results highlights the much stronger interaction of SPIONs with EVSLBs with respect to synthetic SLBs. This evidence strongly supports the hypotheses on the peculiar structure of EVSLBs, with cushioned non-flat areas and extended exposed surface; in addition, it suggests that these features are relevant in the response of biogenic membranes to nano-objects. These findings contribute to the fundamental knowledge on EVSLBs, key for their development both as biomimetic membranes, or as platforms for biomedical applications.


Subject(s)
Extracellular Vesicles/chemistry , Ferric Compounds/chemistry , Lipid Bilayers/chemistry , Nanoparticles/chemistry , Animals , Cell Line, Tumor , Lipid Bilayers/chemical synthesis , Mice , Particle Size , Phosphatidylcholines/chemical synthesis , Phosphatidylcholines/chemistry , Quartz Crystal Microbalance Techniques , Surface Properties
9.
Angew Chem Int Ed Engl ; 59(6): 2323-2327, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31765512

ABSTRACT

Organothiol monolayers on metal substrates (Au, Ag, Cu) and their use in a wide variety of applications have been extensively studied. Here, the growth of layers of organothiols directly onto muscovite mica is demonstrated using a simple procedure. Atomic force microscopy, surface X-ray diffraction, and vibrational sum-frequency generation IR spectroscopy studies revealed that organothiols with various functional endgroups could be self-assembled into (water) stable and adaptable ultra-flat organothiol monolayers over homogenous areas as large as 1 cm2 . The strength of the mica-organothiol interactions could be tuned by exchanging the potassium surface ions for copper ions. Several of these organothiol monolayers were subsequently used as a template for calcite growth.

10.
J Phys Chem Lett ; 10(2): 129-137, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30563321

ABSTRACT

The poor understanding of the interaction of nanomaterials with biologically relevant interfaces is recognized as one of the major issues currently limiting the development of nanomedicine. The central purpose of this study is to compare experimental (confocal microscopy, fluorescence correlation spectroscopy, X-ray reflectivity) and computational (molecular dynamics simulations) results to thoroughly describe the interaction of cationic gold nanoparticles (AuNPs) with mixed zwitterionic/anionic lipid membranes. The adhesion of AuNPs to the lipid membrane is investigated on different length scales from a structural and dynamical point of view; with this approach, a series of complex phenomena, spanning from lipid extraction, localized membrane disruption, lateral phase separation, and slaved diffusion, are characterized and interpreted from a molecular level to macroscopic observations.


Subject(s)
Biomimetic Materials/chemistry , Gold/chemistry , Lipid Bilayers/chemistry , Metal Nanoparticles/chemistry , Molecular Dynamics Simulation , Molecular Conformation , Phospholipids/chemistry
11.
RSC Adv ; 8(34): 18980-18991, 2018 May 22.
Article in English | MEDLINE | ID: mdl-35539633

ABSTRACT

Self-ordered porous anodic alumina (PAA) films are studied extensively due to a large number of possible applications in nanotechnology and low cost of production. Whereas empirical relationships between growth conditions and produced oxides have been established, fundamental aspects regarding pore formation and self-organization are still under debate. We present in situ structural studies of PAA films using grazing-incidence transmission small-angle X-ray scattering. We have considered the two most used recipes where the pores self-organize: 0.3 M H2SO4 at 25 V and 0.3 M C2H2O4 at 40 V. During anodization we have followed the evolution of the structural parameters: average interpore distance, length of ordered pores domains, and thickness of the porous oxide layer. Compared to the extensively used ex situ investigations, our approach gives an unprecedented temporal accuracy in determination of the parameters. By using of Al(100), Al(110) and Al(111) surfaces, the influence of surface orientation on the structural evolution was studied, and no significant differences in the interpore distance and domain length could be observed. However, the rate of oxide growth in 0.3 M C2H2O4 at 40 V was significantly influenced by the surface orientation, where the slowest growth occurs for Al(111). In 0.3 M H2SO4 at 25 V, the growth rates were higher, but the influence of surface orientation was not obvious. The structural evolution was also studied on pre-patterned aluminum surfaces. These studies show that although the initial structures of the oxides are governed by pre-patterning geometry, the final structures are dictated by the anodization conditions.

12.
Nanoscale ; 10(1): 87-92, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29210438

ABSTRACT

Understanding the physical properties of cholesterol-phospholipid systems is essential to gain a better knowledge of the function of each membrane constituent. We present a novel, simple and user-friendly setup that allows for the straightforward grazing incidence X-ray diffraction characterization of hydrated individual supported lipid bilayers. This configuration minimizes the scattering from the liquid and allows the detection of the extremely weak diffracted signal of the membrane, enabling the differentiation of the coexisting domains in DPPC:cholesterol single bilayers.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Cholesterol/chemistry , Lipid Bilayers/chemistry , X-Ray Diffraction
13.
Ultramicroscopy ; 182: 233-242, 2017 11.
Article in English | MEDLINE | ID: mdl-28734230

ABSTRACT

A combined X-ray and scanning tunneling microscopy (STM) instrument is presented that enables the local detection of X-ray absorption on surfaces in a gas environment. To suppress the collection of ion currents generated in the gas phase, coaxially shielded STM tips were used. The conductive outer shield of the coaxial tips can be biased to deflect ions away from the tip core. When tunneling, the X-ray-induced current is separated from the regular, 'topographic' tunneling current using a novel high-speed separation scheme. We demonstrate the capabilities of the instrument by measuring the local X-ray-induced current on Au(1 1 1) in 800 mbar Ar.

14.
Sci Rep ; 7(1): 1615, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28487534

ABSTRACT

Electrochemical Atomic Layer Deposition (E-ALD) technique has demonstrated to be a suitable process for growing compound semiconductors, by alternating the under-potential deposition (UPD) of the metallic element with the UPD of the non-metallic element. The cycle can be repeated several times to build up films with sub-micrometric thickness. We show that it is possible to grow, by E-ALD, Cu2S ultra-thin films on Ag(111) with high structural quality. They show a well ordered layered crystal structure made on alternating pseudohexagonal layers in lower coordination. As reported in literature for minerals in the Cu-S compositional field, these are based on CuS3 triangular groups, with layers occupied by highly mobile Cu ions. This structural model is closely related to the one of the low chalcocite. The domain size of such films is more than 1000 Å in lateral size and extends with a high crystallinity in the vertical growth direction up to more than 10 nm. E-ALD process results in the growth of highly ordered and almost unstrained ultra-thin films. This growth can lead to the design of semiconductors with optimal transport proprieties by an appropriate doping of the intra metallic layer. The present study enables E-ALD as an efficient synthetic route for the growth of semiconducting heterostructures with tailored properties.

15.
J Am Chem Soc ; 139(12): 4532-4539, 2017 03 29.
Article in English | MEDLINE | ID: mdl-28252295

ABSTRACT

The surface restructuring of Pt(111) electrodes upon electrochemical oxidation/reduction in 0.1 M HClO4 was studied by in situ grazing-incidence small-angle X-ray scattering and complementary scanning tunneling microscopy measurements. These methods allow quantitative determination of the formation and structural evolution of nanoscale Pt islands during potential cycles into the oxidation region. A characteristic ripening behavior is observed, where these islands become more prominent and homogeneous in size with increasing number of cycles. Their characteristic lateral dimensions primarily depend on the upper potential limit of the cycle and only slightly increase with cycle number. The structural evolution of the Pt surface morphology strongly resembles that found in studies of Pt(111) homoepitaxial growth and ion erosion in ultrahigh vacuum. It can be fully explained by a microscopic model based on the known surface dynamic behavior under vacuum conditions, indicating that the same dynamics also describe the structural evolution of Pt in the electrochemical environment.

16.
Nanotechnology ; 28(15): 155602, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28221163

ABSTRACT

We demonstrate the controlled growth of Bi(110) and Bi(111) films on an α-Al2O3(0001) substrate by surface x-ray diffraction and x-ray reflectivity using synchrotron radiation. At temperatures as low as 40 K, unanticipated pseudo-cubic Bi(110) films are grown with thicknesses ranging from a few to tens of nanometers. The roughness at the film-vacuum as well as the film-substrate interface, can be reduced by mild heating, where a crystallographic orientation transition of Bi(110) towards Bi(111) is observed at 400 K. From 450 K onwards high quality ultrasmooth Bi(111) films form. Growth around the transition temperature results in the growth of competing Bi(110) and Bi(111) domains.

17.
Membranes (Basel) ; 6(4)2016 Dec 19.
Article in English | MEDLINE | ID: mdl-27999368

ABSTRACT

Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information.

18.
Rev Sci Instrum ; 87(11): 113705, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910601

ABSTRACT

We have developed a new instrument combining a scanning probe microscope (SPM) and an X-ray scattering platform for ambient-pressure catalysis studies. The two instruments are integrated with a flow reactor and an ultra-high vacuum system that can be mounted easily on the diffractometer at a synchrotron end station. This makes it possible to perform SPM and X-ray scattering experiments in the same instrument under identical conditions that are relevant for catalysis.

19.
Langmuir ; 30(42): 12570-7, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25263250

ABSTRACT

Stable layers of crown ethers were grown on muscovite mica using the potassium-crown ether interaction. The multilayers were grown from solution and from the vapor phase and were analyzed with atomic force microscopy (AFM), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, and surface X-ray diffraction (SXRD). The results show that the first molecular layer of the three investigated dibenzo crown ethers is more rigid than the second because of the strong interaction of the first molecular layer with the potassium ions on the surface of muscovite mica. SXRD measurements revealed that for all of the investigated dibenzo crown ethers the first molecule lies relatively flat whereas the second lies more upright. The SXRD measurements further revealed that the molecules of the first layer of dibenzo-15-crown-5 are on top of a potassium atom, showing that the binding mechanism of this layer is indeed of the coordination complex form. The AFM and SXRD data are in good agreement, and the combination of these techniques is therefore a powerful way to determine the molecular orientation at surfaces.

20.
Phys Chem Chem Phys ; 10(31): 4555-8, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18665304

ABSTRACT

Nanopatterned silver substrates with highly reproducible morphologies have been fabricated by micro-contact printing techniques and tested for SERS activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...