Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 135(17): 1484-1496, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32078672

ABSTRACT

Factor VIII (FVIII) replacement products enable comprehensive care in hemophilia A. Treatment goals in severe hemophilia A are expanding beyond low annualized bleed rates to include long-term outcomes associated with high sustained FVIII levels. Endogenous von Willebrand factor (VWF) stabilizes and protects FVIII from degradation and clearance, but it also subjects FVIII to a half-life ceiling of ∼15 to 19 hours. Increasing recombinant FVIII (rFVIII) half-life further is ultimately dependent upon uncoupling rFVIII from endogenous VWF. We have developed a new class of FVIII replacement, rFVIIIFc-VWF-XTEN (BIVV001), that is physically decoupled from endogenous VWF and has enhanced pharmacokinetic properties compared with all previous FVIII products. BIVV001 was bioengineered as a unique fusion protein consisting of a VWF-D'D3 domain fused to rFVIII via immunoglobulin-G1 Fc domains and 2 XTEN polypeptides (Amunix Pharmaceuticals, Inc, Mountain View, CA). Plasma FVIII half-life after BIVV001 administration in mice and monkeys was 25 to 31 hours and 33 to 34 hours, respectively, representing a three- to fourfold increase in FVIII half-life. Our results showed that multifaceted protein engineering, far beyond a few amino acid substitutions, could significantly improve rFVIII pharmacokinetic properties while maintaining hemostatic function. BIVV001 is the first rFVIII with the potential to significantly change the treatment paradigm for severe hemophilia A by providing optimal protection against all bleed types, with less frequent doses. The protein engineering methods described herein can also be applied to other complex proteins.


Subject(s)
Factor VIII/metabolism , Hemophilia A/therapy , Hemorrhage/prevention & control , Recombinant Fusion Proteins/administration & dosage , von Willebrand Factor/metabolism , Animals , Factor VIII/genetics , Hemophilia A/metabolism , Hemophilia A/pathology , Hemostasis , Humans , Male , Mice , Mice, Inbred C57BL , Primates , von Willebrand Factor/genetics
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1114-1115: 93-99, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30939413

ABSTRACT

Characterization of free thiol variants in antibody therapeutics is important for biopharmaceutical development, as the presence of free thiols may have an impact on aggregate formation, structural and thermal stability, as well as antigen-binding potency of monoclonal antibodies. Most current methods for free thiol quantification involve labeling of free thiol groups by different tagging molecules followed by UV, fluorescence or mass spectrometry (MS) detection. Here, we optimized a label-free liquid chromatography (LC)-UV/MS method for free thiol quantification at a subunit level and compared this method with two orthogonal and conventional approaches, Ellman's assay and peptide mapping with differential alkylation. This subunit unit approach was demonstrated to be able to provide domain-specific free thiol quantification and comparable results with labeling approaches, using a relatively simple and efficient workflow.


Subject(s)
Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/chemistry , Chromatography, Liquid/methods , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Animals , Dithionitrobenzoic Acid , Immunoglobulin G/analysis , Immunoglobulin G/chemistry , Mass Spectrometry/methods , Peptide Mapping , Reproducibility of Results
3.
J Pharm Biomed Anal ; 151: 133-144, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29324282

ABSTRACT

Monoclonal antibodies (mAbs) are the fastest growing class of biopharmaceuticals. The specific therapeutic tasks vary among different mAbs, which may include neutralization of soluble targets, activation of cytotoxic pathways, targeted drug delivery, and diagnostic imaging. The specific therapeutic goal defines which interactions of the antibody with its multiple physiological partners are most critical for function, and which ones are irrelevant or indeed detrimental. In this work, we explored the ability of the glycan chains to affect IgG1 interaction with two key receptor families, FcRn and γ-type Fc receptors, as well as the influence of glycan composition on the conformation and stability of the antibody molecule. Three different glycan-modified forms of IgG1 (fully deglycosylated, hypergalactosylated and hypersialylated) were produced and characterized alongside the unmodified mAb molecule. Biophysical measurements did not reveal any changes that would be indicative of alterations in the higher order structure or increased aggregation propensity for any of the three glycoforms compared to the unmodified mAb, although the CH2 domain was shown to have reduced thermal stability in the fully deglycosylated form. No significant changes were observed for the hypergalactosylated and hypersialylated forms of IgG1 with regards to binding to FcRn, FcγRIIA and FcγRIIIA, suggesting that neither half-life in circulation nor their ability to induce an immune response are likely to be affected by these modifications of the glycan chains. In contrast, no measurable binding was observed for the deglycosylated form of IgG1 with either FcγRIIA or FcγRIIIA, although this form of the antibody retained the ability to associate with FcRn. These highly specific patterns of attenuation of Fc receptor recognition can be exploited in the future for therapeutic purposes.


Subject(s)
Immunoglobulin G/analysis , Immunoglobulin G/chemistry , Polysaccharides/analysis , Polysaccharides/chemistry , Animals , Biochemical Phenomena , Biophysical Phenomena , CHO Cells , Cricetinae , Cricetulus , Glycosylation , Humans , Protein Structure, Secondary , Protein Structure, Tertiary
4.
Biotechnol Prog ; 28(3): 814-23, 2012.
Article in English | MEDLINE | ID: mdl-22556165

ABSTRACT

Mammalian cell cultures used for biopharmaceutical production undergo various dynamic biological changes over time, including the transition of cells from an exponential growth phase to a stationary phase during cell culture. To better understand the dynamic aspects of cell culture, a quantitative proteomics approach was used to identify dynamic trends in protein expression over the course of a Chinese hamster ovary (CHO) cell culture for the production of a recombinant monoclonal antibody and overexpressing the antiapoptotic gene Bcl-xl. Samples were analyzed using a method incorporating iTRAQ labeling, two-dimensional LC/MS, and linear regression calculations to identify significant dynamic trends in protein abundance. Using this approach, 59 proteins were identified with significant temporal changes in expression. Pathway analysis tools were used to identify a putative network of proteins associated with cell growth and apoptosis. Among the differentially expressed proteins were molecular chaperones and isomerases, such as GRP78 and PDI, and reported cell growth markers MCM2 and MCM5. In addition, two proteins with growth-regulating properties, transglutaminase-2 and clusterin, were identified. These proteins are associated with tumor proliferation and apoptosis and were observed to be expressed at relatively high levels during stationary phase, which was confirmed by western blotting. The proteomic methodology described here provides a dynamic view of protein expression throughout a CHO fed-batch cell culture, which may be useful for further elucidating the biological processes driving mammalian cell culture performance.


Subject(s)
Proteome , bcl-X Protein/metabolism , Animals , Blotting, Western , CHO Cells , Chromatography, High Pressure Liquid , Cricetinae , Cricetulus , Proteomics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tandem Mass Spectrometry , bcl-X Protein/genetics
5.
Article in English | MEDLINE | ID: mdl-22483985

ABSTRACT

Methionine oxidation has been demonstrated to play an important role in protein stability in vitro and in vivo. It may also cause changes in biological activity and immunogenicity profile of therapeutic proteins. Therefore, it is critical to monitor methionine oxidation in biopharmaceuticals during process and formulation development, as well as long-term stability studies. A common analytical method for methionine oxidation determination is peptide mapping analysis of protein enzymatic digests using UV detection with or without mass spectrometric detection. The quantitation of oxidation is performed based on the UV or extracted ion chromatographic peak areas of the oxidized and non-oxidized peptides. This method was found to be susceptible to significant variability over long-term use. Major factors leading to this variability included presence of low levels of metal ions, especially iron, in the digestion buffer, chromatographic column, LC injector, and other sample contact surfaces. Careful control of metal ion levels generally leads to less variability and long-term consistency of peptide mapping methods for oxidation determination.


Subject(s)
Biopharmaceutics/methods , Chromatography, Liquid/methods , Immunoglobulin G/chemistry , Mass Spectrometry/methods , Methionine/chemistry , Peptide Mapping/methods , Humans , Immunoglobulin G/metabolism , Methionine/analysis , Methionine/metabolism , Oxidation-Reduction , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Protein Stability
6.
Anal Chem ; 81(17): 7357-62, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19663468

ABSTRACT

The productivity of mammalian cell culture expression systems is critically important to the production of biopharmaceuticals. In this study, a high-producing Chinese hamster ovary cell culture which was transfected with the apoptosis inhibitor Bcl-X(L) gene was compared to a low-producing control that was not transfected. Shotgun proteomics was used to compare the high and low-producing fed-batch cell cultures at different growth time points. The goals of this study were twofold; it would be of value to find a biomarker that could predict cell lines with higher growth efficiency and to gain mechanistic insights into the effects of the introduction of a foreign gene that is known to have growth regulating properties in human cells. A total of 392 proteins were identified in this study, and 32 of these proteins were determined to be differentially expressed. In the high-producing cell culture, several proteins related to protein metabolism were upregulated, such as eukaryotic translation initiation factor 3 and ribosome 40S. In addition, several intermediate filament proteins such as vimentin and annexin, as well as histone H1.2 and H2A, were downregulated in the high producer. The expression of these proteins may be indicative of cellular productivity. A growth inhibitor, galectin-1, was downregulated in the high producer, which may be linked to the expression of Bcl-X(L). The molecular chaperone BiP was upregulated significantly in the high producer and may indicate an unfolded protein response due to endoplasmic reticulum (ER) stress. Several proteins involved in regulation of the cell cycle such as RACK1 and GTPase Ran were found to be differentially expressed, which may be due to a differentially controlled cell cycle between low- and high-producing cell cultures.


Subject(s)
Ovary/cytology , Ovary/metabolism , Proteome/analysis , Proteome/genetics , Proteomics , bcl-X Protein/genetics , Animals , CHO Cells , Cell Line , Cricetinae , Cricetulus , Female , Gene Expression , Transfection
7.
Electrophoresis ; 29(21): 4368-76, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19016565

ABSTRACT

In this work several aspects of imaging capillary IEF (icIEF) application for charge heterogeneity analysis of recombinant proteins and monoclonal antibodies have been discussed. Advantages of the method as compared with traditional approaches for determination of biomolecule charge heterogeneity, such as gel and IEC, have been demonstrated. Correlation of icIEF-detected protein isoforms with the charge heterogeneity determined by IEC has been shown for a representative recombinant monoclonal antibody. Identification of charged variants collected from IEC has been performed by ESI-MS. Qualification of an icIEF method for use in quality control environment for quantitative analysis of recombinant protein charge heterogeneity and monitoring protein stability has also been discussed. The intermediate precision for determination of pI of main or main acidic species was

Subject(s)
Recombinant Proteins/analysis , Antibodies, Monoclonal/analysis , Cation Exchange Resins , Chromatography, Ion Exchange , Electricity , Isoelectric Focusing/methods , Protein Isoforms/analysis , Quality Control , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...