Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Rev Chem ; 7(10): 692-709, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37558761

ABSTRACT

Deep learning methods outperform human capabilities in pattern recognition and data processing problems and now have an increasingly important role in scientific discovery. A key application of machine learning in molecular science is to learn potential energy surfaces or force fields from ab initio solutions of the electronic Schrödinger equation using data sets obtained with density functional theory, coupled cluster or other quantum chemistry (QC) methods. In this Review, we discuss a complementary approach using machine learning to aid the direct solution of QC problems from first principles. Specifically, we focus on quantum Monte Carlo methods that use neural-network ansatzes to solve the electronic Schrödinger equation, in first and second quantization, computing ground and excited states and generalizing over multiple nuclear configurations. Although still at their infancy, these methods can already generate virtually exact solutions of the electronic Schrödinger equation for small systems and rival advanced conventional QC methods for systems with up to a few dozen electrons.

2.
Nat Commun ; 14(1): 2858, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37208324

ABSTRACT

The impressive pace of advance of quantum technology calls for robust and scalable techniques for the characterization and validation of quantum hardware. Quantum process tomography, the reconstruction of an unknown quantum channel from measurement data, remains the quintessential primitive to completely characterize quantum devices. However, due to the exponential scaling of the required data and classical post-processing, its range of applicability is typically restricted to one- and two-qubit gates. Here, we present a technique for performing quantum process tomography that addresses these issues by combining a tensor network representation of the channel with a data-driven optimization inspired by unsupervised machine learning. We demonstrate our technique through synthetically generated data for ideal one- and two-dimensional random quantum circuits of up to 10 qubits, and a noisy 5-qubit circuit, reaching process fidelities above 0.99 using several orders of magnitude fewer (single-qubit) measurement shots than traditional tomographic techniques. Our results go far beyond state-of-the-art, providing a practical and timely tool for benchmarking quantum circuits in current and near-term quantum computers.

3.
Proc Natl Acad Sci U S A ; 119(32): e2122059119, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35921435

ABSTRACT

We introduce a systematically improvable family of variational wave functions for the simulation of strongly correlated fermionic systems. This family consists of Slater determinants in an augmented Hilbert space involving "hidden" additional fermionic degrees of freedom. These determinants are projected onto the physical Hilbert space through a constraint that is optimized, together with the single-particle orbitals, using a neural network parameterization. This construction draws inspiration from the success of hidden-particle representations but overcomes the limitations associated with the mean-field treatment of the constraint often used in this context. Our construction provides an extremely expressive family of wave functions, which is proved to be universal. We apply this construction to the ground-state properties of the Hubbard model on the square lattice, achieving levels of accuracy that are competitive with those of state-of-the-art variational methods.

4.
Phys Rev Lett ; 127(2): 022502, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34296893

ABSTRACT

The complexity of many-body quantum wave functions is a central aspect of several fields of physics and chemistry where nonperturbative interactions are prominent. Artificial neural networks (ANNs) have proven to be a flexible tool to approximate quantum many-body states in condensed matter and chemistry problems. In this work we introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei, and approximately solve the nuclear many-body Schrödinger equation. Using efficient stochastic sampling and optimization schemes, our approach extends pioneering applications of ANNs in the field, which present exponentially scaling algorithmic complexity. We compute the binding energies and point-nucleon densities of A≤4 nuclei as emerging from a leading-order pionless effective field theory Hamiltonian. We successfully benchmark the ANN wave function against more conventional parametrizations based on two- and three-body Jastrow functions, and virtually exact Green's function Monte Carlo results.

5.
Phys Rev Lett ; 127(27): 276402, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35061436

ABSTRACT

Gauge symmetries play a key role in physics appearing in areas such as quantum field theories of the fundamental particles and emergent degrees of freedom in quantum materials. Motivated by the desire to efficiently simulate many-body quantum systems with exact local gauge invariance, gauge equivariant neural-network quantum states are introduced, which exactly satisfy the local Hilbert space constraints necessary for the description of quantum lattice gauge theory with Z_{d} gauge group and non-Abelian Kitaev D(G) models on different geometries. Focusing on the special case of Z_{2} gauge group on a periodically identified square lattice, the equivariant architecture is analytically shown to contain the loop-gas solution as a special case. Gauge equivariant neural-network quantum states are used in combination with variational quantum Monte Carlo to obtain compact descriptions of the ground state wave function for the Z_{2} theory away from the exactly solvable limit, and to demonstrate the confining or deconfining phase transition of the Wilson loop order parameter.

6.
Phys Rev Lett ; 125(7): 076402, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32857556

ABSTRACT

A striking consequence of the Hohenberg-Kohn theorem of density functional theory is the existence of a bijection between the local density and the ground-state many-body wave function. Here we study the problem of constructing approximations to the Hohenberg-Kohn map using a statistical learning approach. Using supervised deep learning with synthetic data, we show that this map can be accurately constructed for a chain of one-dimensional interacting spinless fermions in different phases of this model including the charge ordered Mott insulator and metallic phases and the critical point separating them. However, we also find that the learning is less effective across quantum phase transitions, suggesting an intrinsic difficulty in efficiently learning nonsmooth functional relations. We further study the problem of directly reconstructing complex observables from simple local density measurements, proposing a scheme amenable to statistical learning from experimental data.

7.
Nat Commun ; 11(1): 2368, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32398658

ABSTRACT

Neural-network quantum states have been successfully used to study a variety of lattice and continuous-space problems. Despite a great deal of general methodological developments, representing fermionic matter is however still early research activity. Here we present an extension of neural-network quantum states to model interacting fermionic problems. Borrowing techniques from quantum simulation, we directly map fermionic degrees of freedom to spin ones, and then use neural-network quantum states to perform electronic structure calculations. For several diatomic molecules in a minimal basis set, we benchmark our approach against widely used coupled cluster methods, as well as many-body variational states. On some test molecules, we systematically improve upon coupled cluster methods and Jastrow wave functions, reaching chemical accuracy or better. Finally, we discuss routes for future developments and improvements of the methods presented.

8.
Phys Rev Lett ; 124(2): 020503, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32004039

ABSTRACT

Artificial neural networks were recently shown to be an efficient representation of highly entangled many-body quantum states. In practical applications, neural-network states inherit numerical schemes used in variational Monte Carlo method, most notably the use of Markov-chain Monte Carlo (MCMC) sampling to estimate quantum expectations. The local stochastic sampling in MCMC caps the potential advantages of neural networks in two ways: (i) Its intrinsic computational cost sets stringent practical limits on the width and depth of the networks, and therefore limits their expressive capacity; (ii) its difficulty in generating precise and uncorrelated samples can result in estimations of observables that are very far from their true value. Inspired by the state-of-the-art generative models used in machine learning, we propose a specialized neural-network architecture that supports efficient and exact sampling, completely circumventing the need for Markov-chain sampling. We demonstrate our approach for two-dimensional interacting spin models, showcasing the ability to obtain accurate results on larger system sizes than those currently accessible to neural-network quantum states.

9.
Phys Rev Lett ; 122(25): 250502, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31347862

ABSTRACT

In experimentally realistic situations, quantum systems are never perfectly isolated and the coupling to their environment needs to be taken into account. Often, the effect of the environment can be well approximated by a Markovian master equation. However, solving this master equation for quantum many-body systems becomes exceedingly hard due to the high dimension of the Hilbert space. Here we present an approach to the effective simulation of the dynamics of open quantum many-body systems based on machine-learning techniques. We represent the mixed many-body quantum states with neural networks in the form of restricted Boltzmann machines and derive a variational Monte Carlo algorithm for their time evolution and stationary states. We document the accuracy of the approach with numerical examples for a dissipative spin lattice system.

10.
Nat Commun ; 9(1): 5322, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30552316

ABSTRACT

Obtaining accurate properties of many-body interacting quantum matter is a long-standing challenge in theoretical physics and chemistry, rooting into the complexity of the many-body wave-function. Classical representations of many-body states constitute a key tool for both analytical and numerical approaches to interacting quantum problems. Here, we introduce a technique to construct classical representations of many-body quantum systems based on artificial neural networks. Our constructions are based on the deep Boltzmann machine architecture, in which two layers of hidden neurons mediate quantum correlations. The approach reproduces the exact imaginary-time evolution for many-body lattice Hamiltonians, is completely deterministic, and yields networks with a polynomially-scaling number of neurons. We provide examples where physical properties of spin Hamiltonians can be efficiently obtained. Also, we show how systematic improvements upon existing restricted Boltzmann machines ansatze can be obtained. Our method is an alternative to the standard path integral and opens new routes in representing quantum many-body states.

11.
Phys Rev Lett ; 121(16): 167204, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30387658

ABSTRACT

Artificial neural networks have been recently introduced as a general ansatz to represent many-body wave functions. In conjunction with variational Monte Carlo calculations, this ansatz has been applied to find Hamiltonian ground states and their energies. Here, we provide extensions of this method to study excited states, a central task in several many-body quantum calculations. First, we give a prescription that allows us to target eigenstates of a (nonlocal) symmetry of the Hamiltonian. Second, we give an algorithm to compute low-lying excited states without symmetries. We demonstrate our approach with both restricted Boltzmann machines and feed-forward neural networks. Results are shown for the one-dimensional spin-1/2 Heisenberg model, and for the one-dimensional Bose-Hubbard model. When comparing to exact results, we obtain good agreement for a large range of excited-states energies. Interestingly, we find that deep networks typically outperform shallow architectures for high-energy states.

12.
Science ; 355(6325): 602-606, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28183973

ABSTRACT

The challenge posed by the many-body problem in quantum physics originates from the difficulty of describing the nontrivial correlations encoded in the exponential complexity of the many-body wave function. Here we demonstrate that systematic machine learning of the wave function can reduce this complexity to a tractable computational form for some notable cases of physical interest. We introduce a variational representation of quantum states based on artificial neural networks with a variable number of hidden neurons. A reinforcement-learning scheme we demonstrate is capable of both finding the ground state and describing the unitary time evolution of complex interacting quantum systems. Our approach achieves high accuracy in describing prototypical interacting spins models in one and two dimensions.

13.
Phys Rev Lett ; 116(16): 169901, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27152828

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.113.035301.

14.
Phys Rev Lett ; 113(3): 035301, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-25083651

ABSTRACT

We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.

15.
Phys Rev Lett ; 111(5): 050406, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23952374

ABSTRACT

We study the phase diagram of two-dimensional, interacting bosons in the presence of a correlated disorder in continuous space, by using large-scale quantum Monte Carlo simulations at finite temperature. We show that the superfluid transition is strongly protected against disorder. It remains of the Berezinskii-Kosterlitz-Thouless type up to disorder strengths comparable to the chemical potential. Moreover, we study the transport properties in the strong disorder regime where a zero-temperature Bose-glass phase is expected. We show that the conductance exhibits a thermally activated behavior vanishing only at zero temperature. Our results point towards the existence of a Bose bad-metal phase as a precursor of the Bose-glass phase.

16.
Sci Rep ; 2: 243, 2012.
Article in English | MEDLINE | ID: mdl-22355756

ABSTRACT

When classical systems fail to explore their entire configurational space, intriguing macroscopic phenomena like aging and glass formation may emerge. Also closed quanto-mechanical systems may stop wandering freely around the whole Hilbert space, even if they are initially prepared into a macroscopically large combination of eigenstates. Here, we report numerical evidences that the dynamics of strongly interacting lattice bosons driven sufficiently far from equilibrium can be trapped into extremely long-lived inhomogeneous metastable states. The slowing down of incoherent density excitations above a threshold energy, much reminiscent of a dynamical arrest on the verge of a glass transition, is identified as the key feature of this phenomenon. We argue that the resulting long-lived inhomogeneities are responsible for the lack of thermalization observed in large systems. Such a rich phenomenology could be experimentally uncovered upon probing the out-of-equilibrium dynamics of conveniently prepared quantum states of trapped cold atoms which we hereby suggest.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(4 Pt 2): 046710, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21230415

ABSTRACT

We provide an extension to lattice systems of the reptation quantum Monte Carlo algorithm, originally devised for continuous Hamiltonians. For systems affected by the sign problem, a method to systematically improve upon the so-called fixed-node approximation is also proposed. The generality of the method, which also takes advantage of a canonical worm algorithm scheme to measure off-diagonal observables, makes it applicable to a vast variety of quantum systems and eases the study of their ground-state and excited-state properties. As a case study, we investigate the quantum dynamics of the one-dimensional Heisenberg model and we provide accurate estimates of the ground-state energy of the two-dimensional fermionic Hubbard model.

18.
Phys Rev Lett ; 103(21): 215302, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-20366050

ABSTRACT

The role of geometrical frustration in strongly interacting bosonic systems is studied with a combined numerical and analytical approach. We demonstrate the existence of a novel quantum phase featuring both Bose-Einstein condensation and spin-glass behavior. The differences between such a phase and the otherwise insulating "Bose glasses" are elucidated.

SELECTION OF CITATIONS
SEARCH DETAIL
...