Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 10: 890291, 2022.
Article in English | MEDLINE | ID: mdl-35910722

ABSTRACT

Lithium-manganese-based compounds are promising intercalation host materials for aqueous battery systems due to their synergy with high ionic conductive aqueous electrolytes, safety, eco-friendliness, and low cost. Yet, due to poor electrical conductivity and trapping of diffused electrolyte cations within its crystal formation, achieving optimum cycle stability and rate capability remains a challenge. This unfortunately limits their use in modern day high-powered devices, which require quality output with high reliability. Here, the authors propose a facile method to produce LiMn2O4 and LiFe0.5Mn0.5PO4 and compare their structural stability and corresponding electrochemical performance by controlling the interfacial layer through multi-walled carbon nanotubes' (MWCNTs) infusion. High-resolution scanning electron microscopy results revealed that the active particles were connected by MWCNT via the formation of a three-dimensional wiring network, suggesting that stronger interfacial bonding exists within the composite. As a result, the conducting composite decreases the electron transport distance with an increased number of active sites, thus accelerating the lithium ion intercalation/de-intercalation process. Compared to C/LMO with a Rct of 226.3 Ω and change transfer (io) of 2.75 × 10-3, the C/LFMPO-composite has a reduced Rct of 138 Ω and enhanced rate of 1.86 × 10-4 A cm-2. The faster kinetics can be attributed to the unique synergy between the conductive MWCNTs and the contribution of both single-phase and two-phase regions in Li1-x(Fe,Mn)PO4 during Li+ extraction and insertion. The electrochemical features before and after modification correlate well with the interplanar distance of the expanded manganese and manganese phosphate layers shown by their unique surface features, as analyzed by advanced spectroscopy techniques. The results reveal that MWCNTs facilitate faster electron transmission whilst maintaining the stability of the host framework, which makes them favorable as next generation cathode materials.

2.
Sci Rep ; 10(1): 21062, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33273484

ABSTRACT

The low-energy electronic structure, including the Fermi surface topology, of the itinerant metamagnet [Formula: see text] is investigated for the first time by synchrotron-based angle-resolved photoemission. Well-defined quasiparticle band dispersions with matrix element dependencies on photon energy or photon polarization are presented. Four bands crossing the Fermi-level, giving rise to four Fermi surface sheets are resolved; and their complete topography, effective mass as well as their electron and hole character are determined. These data reveal the presence of kink structures in the near-Fermi-level band dispersion, with energies ranging from 30 to 69 meV. Together with previously reported Raman spectroscopy and lattice dynamic calculation studies, the data suggest that these kinks originate from strong electron-phonon coupling present in [Formula: see text]. Considering that the kink structures of [Formula: see text] are similar to those of the other three members of the Ruddlesden Popper structured ruthenates, the possible universality of strong coupling of electrons to oxygen-related phonons in [Formula: see text] compounds is proposed.

3.
Mater Sci Eng C Mater Biol Appl ; 115: 111092, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32600696

ABSTRACT

This study reports on the spectroscopic characterization and antimicrobial potency of polyurethane cyclodextrin co-polymerized phosphorylated multiwalled carbon nanotube-doped Ag-TiO2 nanoparticle (pMWCNT-CD/Ag-TiO2) bionanosponge nanocomposite. The synthesis of pMWCNT-CD/Ag-TiO2 bionanosponge nanocomposite was carried out through the combined processes of amidation and polymerization reactions as well as the sol-gel method. The native nanosponge cyclodextrin and phosphorylated multiwalled carbon nanotube-nanosponge CD (pMWCNT-CD) polyurethanes were also prepared, and their antimicrobial activities carried out for comparison purposes. The synthesized bionanosponge polyurethane materials were characterized using Fourier-transform infrared (FTIR) spectroscopy, Laser Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) to give clear information regarding their structural, and dynamic physicochemical properties. The potency tests of the synthesized compounds were carried out against three bacterial strains Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and two fungal representatives Aspergillus ochraceus and Aspergillus fumigatus, using the disc diffusion method. Micro dilution and agar plating were used to determine the minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC), respectively. The results obtained revealed that pMWCNT-CD/Ag-TiO2 exhibits superior antibacterial and antifungal activities when compared to the other bionanosponge polymers tested. Thus, the bionanosponge polyurethane pMWCNT-CD/Ag-TiO2 nanocomposite can be considered as an active antimicrobial compound (AMC).


Subject(s)
Anti-Infective Agents/pharmacology , Cyclodextrins/pharmacology , Polyurethanes/chemistry , Silver/pharmacology , Titanium/pharmacology , Anti-Infective Agents/chemistry , Aspergillus fumigatus/drug effects , Aspergillus ochraceus/drug effects , Bacillus subtilis/drug effects , Cyclodextrins/chemistry , Escherichia coli/drug effects , Microbial Sensitivity Tests , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Staphylococcus aureus/drug effects , Titanium/chemistry , X-Ray Diffraction
4.
ACS Appl Mater Interfaces ; 11(36): 32994-33005, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31423771

ABSTRACT

The transformation of various organic molecules into value-added chemicals has been driven by the success in development of highly active catalytic systems. Heterogeneous catalysts have found use in many industrial processes by virtue of their ease of separation and high activities in various reactions. However, many processes employing heterogeneous catalysts in the transformation of organic molecules suffer significantly when it comes to product selectivity. Herein, we report on the synthesis of highly selective palladium nanoparticle (Pd NP)-containing catalysts. The heterogeneous catalysts reported herein consist of active mixed-metal oxides, in the form of perovskites as catalysts, and as catalytic supports for Pd NPs. The activity of pure perovskites when applied as catalysts in the hydrogenation of cinnamaldehyde is 3 factors lower compared with Pd NPs immobilized on them. However, considering the fact that perovskites achieved percentage conversions between 18 and 25% in a short period of time makes them perfect candidates to replace platinum group metals in the future. In addition to being earmarked as the future of catalysis, perovskites induced a synergistic effect on the conversion of the substrate compared to when Pd NPs are immobilized on the silica support. Furthermore, these catalysts are 100% selective to hydrocinnamaldehyde and stable for up to five catalytic cycles. With regard to reusability of the catalysts, Pd/LaFeO3 was used as a benchmark catalyst and revealed the need for surface restructuring of the catalyst for optimum activity.

5.
RSC Adv ; 8(42): 24049-24058, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-35540292

ABSTRACT

Thiospinels show interesting catalytic and energy storage applications, however, the cationic disorder can have major influence on the energy generation and/or energy storage applications. In this study, the effect of stoichiometric variation of metals in a thiospinel i.e. Ni x Co3-x S4, is examined on energy generation and storage properties. Nickel- or cobalt-rich Ni x Co3-x S4 nanosheets were prepared by the hot injection method using single molecular precursors. The nanosheets were characterized by p-XRD, TEM, HR-TEM, EDX and XPS techniques. Nickel-rich and cobalt-rich nanosheets were tested for oxygen and hydrogen evolution reactions and for supercapacitance performance. It was observed that the nickel-rich Ni x Co3-x S4 nanosheets have superior energy storage and energy generation properties.

6.
RSC Adv ; 8(70): 39837-39848, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-35558230

ABSTRACT

Mn substituted Mn x Zn1-x Co2O4 (x = 0, 0.3, 0.5, 0.7, 1) oxides were synthesized by a facile co-precipitation method followed by calcination at 600 °C. The presence of manganese ions causes appreciable changes in the structural and magnetic properties of the Mn-substituted ZnCo2O4. The morphologies, structures, and electronic properties of Mn-Zn-Co oxide microspheres were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The X-ray diffraction and Fourier transform infrared spectroscopy results confirmed the formation of spinel Mn x Zn1-x Co2O4. It was shown that the Mn-Zn-Co oxide microspheres increase in size and become regular in shape with increasing Mn concentration with the crystal size lying in the range from 19.1 nm to 51.3 nm. Magnetization measurements were carried out using a vibrating sample magnetometer at room temperature and 10 K. The saturation magnetization is observed to increase with increasing Mn concentration from x = 0 to x = 1.

7.
Sci Rep ; 7(1): 3867, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28634360

ABSTRACT

Metamagnetism occuring inside a ferromagnetic phase is peculiar. Therefore, Sr4Ru3O10, a T C = 105 K ferromagnet, has attracted much attention in recent years, because it develops a pronounced metamagnetic anomaly below T C for magnetic fields applied in the crystallographic ab-plane. The metamagnetic transition moves to higher fields for lower temperatures and splits into a double anomaly at critical fields H c1 = 2.3 T and H c2 = 2.8 T, respectively. Here, we report a detailed study of the different components of the magnetization vector as a function of temperature, applied magnetic field, and varying angle in Sr4Ru3O10. We discover for the first time a reduction of the magnetic moment in the plane of rotation at the metamagnetic transition. The anomaly shifts to higher fields by rotating the field from H ⊥ c to H || c. We compare our experimental findings with numerical simulations based on spin reorientation models taking into account magnetocrystalline anisotropy, Zeeman effect and antisymmetric exchange interactions. While Magnetocrystalline anisotropy combined with a Zeeman term are sufficient to explain a metamagnetic transition in Sr4Ru3O10, a Dzyaloshinskii-Moriya term is crucial to account for the reduction of the magnetic moment as observed in the experiments.

8.
J Vis Exp ; (68)2012 Oct 09.
Article in English | MEDLINE | ID: mdl-23093178

ABSTRACT

The physical properties of a material are defined by its electronic structure. Electrons in solids are characterized by energy (ω) and momentum (k) and the probability to find them in a particular state with given ω and k is described by the spectral function A(k, ω). This function can be directly measured in an experiment based on the well-known photoelectric effect, for the explanation of which Albert Einstein received the Nobel Prize back in 1921. In the photoelectric effect the light shone on a surface ejects electrons from the material. According to Einstein, energy conservation allows one to determine the energy of an electron inside the sample, provided the energy of the light photon and kinetic energy of the outgoing photoelectron are known. Momentum conservation makes it also possible to estimate k relating it to the momentum of the photoelectron by measuring the angle at which the photoelectron left the surface. The modern version of this technique is called Angle-Resolved Photoemission Spectroscopy (ARPES) and exploits both conservation laws in order to determine the electronic structure, i.e. energy and momentum of electrons inside the solid. In order to resolve the details crucial for understanding the topical problems of condensed matter physics, three quantities need to be minimized: uncertainty* in photon energy, uncertainty in kinetic energy of photoelectrons and temperature of the sample. In our approach we combine three recent achievements in the field of synchrotron radiation, surface science and cryogenics. We use synchrotron radiation with tunable photon energy contributing an uncertainty of the order of 1 meV, an electron energy analyzer which detects the kinetic energies with a precision of the order of 1 meV and a He(3) cryostat which allows us to keep the temperature of the sample below 1 K. We discuss the exemplary results obtained on single crystals of Sr2RuO4 and some other materials. The electronic structure of this material can be determined with an unprecedented clarity.


Subject(s)
Photoelectron Spectroscopy/instrumentation , Photoelectron Spectroscopy/methods , Cold Temperature , Ruthenium Compounds/chemistry , Strontium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...