Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(9): 091302, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34506170

ABSTRACT

Inflation solves several cosmological problems at the classical and quantum level, with a strong agreement between the theoretical predictions of well-motivated inflationary models and observations. In this Letter, we study the corrections induced by dynamical collapse models, which phenomenologically solve the quantum measurement problem, to the power spectrum of the comoving curvature perturbation during inflation and the radiation-dominated era. We find that the corrections are strongly negligible for the reference values of the collapse parameters.

2.
Phys Rev Lett ; 125(10): 100404, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32955323

ABSTRACT

Despite the unquestionable empirical success of quantum theory, witnessed by the recent uprising of quantum technologies, the debate on how to reconcile the theory with the macroscopic classical world is still open. Spontaneous collapse models are one of the few testable solutions so far proposed. In particular, the continuous spontaneous localization (CSL) model has become subject of intense experimental research. Experiments looking for the universal force noise predicted by CSL in ultrasensitive mechanical resonators have recently set the strongest unambiguous bounds on CSL. Further improving these experiments by direct reduction of mechanical noise is technically challenging. Here, we implement a recently proposed alternative strategy that aims at enhancing the CSL noise by exploiting a multilayer test mass attached on a high quality factor microcantilever. The test mass is specifically designed to enhance the effect of CSL noise at the characteristic length r_{c}=10^{-7} m. The measurements are in good agreement with pure thermal motion for temperatures down to 100 mK. From the absence of excess noise, we infer a new bound on the collapse rate at the characteristic length r_{c}=10^{-7} m, which improves over previous mechanical experiments by more than 1 order of magnitude. Our results explicitly challenge a well-motivated region of the CSL parameter space proposed by Adler.

3.
Phys Rev Lett ; 119(11): 110401, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28949215

ABSTRACT

Spontaneous collapse models predict that a weak force noise acts on any mechanical system, as a consequence of the collapse of the wave function. Significant upper limits on the collapse rate have been recently inferred from precision mechanical experiments, such as ultracold cantilevers and the space mission LISA Pathfinder. Here, we report new results from an experiment based on a high-Q cantilever cooled to millikelvin temperatures, which is potentially able to improve the current bounds on the continuous spontaneous localization (CSL) model by 1 order of magnitude. High accuracy measurements of the cantilever thermal fluctuations reveal a nonthermal force noise of unknown origin. This excess noise is compatible with the CSL heating predicted by Adler. Several physical mechanisms able to explain the observed noise have been ruled out.

SELECTION OF CITATIONS
SEARCH DETAIL
...