Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 117(41): 21577-21582, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24163715

ABSTRACT

We report the behavior of Au nanoparticles anchored onto a Si(111) substrate and the evolution of the combined structure with annealing and oxidation. Au nanoparticles, formed by annealing a Au film, appear to "float" upon a growing layer of SiO2 during oxidation at high temperature, yet they also tend to become partially encapsulated by the growing silica layers. It is proposed that this occurs largely because of the differential growth rates of the silica layer on the silicon substrate between the particles and below the particles due to limited access of oxygen to the latter. This in turn is due to a combination of blockage of oxygen adsorption by the Au and limited oxygen diffusion under the gold. We think that such behavior is likely to be seen for other metal-semiconductor systems.

2.
Phys Chem Chem Phys ; 15(29): 12056-67, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23552323

ABSTRACT

Iron molybdate catalysts are used for the selective oxidation of methanol to formaldehyde. In this paper we have attempted to understand what determines high selectivity in this reaction system by doping haematite with surface layers of Mo by incipient wetness impregnation. This works well and the Mo appears to form finely dispersed layers. Even very low loadings of Mo have a marked effect on improving the selectivity to formaldehyde. Haematite itself is a very poor catalyst with high selectivity to combustion products, whereas, when only 0.25 monolayers of Mo are deposited on the surface, formaldehyde and CO selectivities are greatly enhanced and CO2 production is greatly diminished. However, even with as much as seven monolayers of Mo dosed on to the surface, these materials achieve much less selectivity to formaldehyde at high conversion than do the industrial catalysts. The reason for this is that the Mo forms a 'skin' of ferric molybdate on a core of iron oxide, but does not produce a pure Mo oxide monolayer on the surface, a situation which is essential for very high yields of formaldehyde.

3.
Faraday Discuss ; 152: 63-86; discussion 99-120, 2011.
Article in English | MEDLINE | ID: mdl-22455039

ABSTRACT

In this study, a systematic series of AuPd bimetallic particles were prepared by colloidal synthesis methods, in order to gain better control over the particle size distribution and structure. Particles having random alloy structures, as well as 'designer' particles with Pd-shell/Au-core and Au-shell/Pd-core morphologies, have been prepared and immobilized on both activated carbon and TiO2 supports. Aberration corrected analytical electron microscopy (ACEAM) has been extensively used to characterize these sol-immobilized materials. In particular, state-of-the-art z-contrast STEM-HAADF imaging and STEM-XEDS spectrum imaging has been employed. These techniques have provided invaluable new (and often unexpected) information on the atomic structure, elemental distribution within particles, and compositional variations between particles for these controlled catalyst preparations. In addition, we have been able to compare their differing thermal stability, sintering and wetting behaviors on activated carbon and TiO2 supports. These sol immobilized materials have also been compared as catalysts for (i) benzyl alcohol oxidation and (ii) the direct production of H2O2 in an attempt to elucidate the optimum particle morphology/ support combination for each reaction.

4.
Philos Trans A Math Phys Eng Sci ; 363(1829): 829-46; discussion 1035-40, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15901538

ABSTRACT

Oxygen chemisorption at metal surfaces has been shown through a combination of scanning tunnelling microscopy and photoelectron spectroscopy to involve transient states that provide low energy pathways for a wide range of surface reactions including the catalytic oxidation of ammonia and hydrocarbons. The kinetically 'hot' transients are disordered and mobile, become unreactive when they form ordered structures, and are characterized by non-classical kinetic behaviour. The role of surface additives (caesium) in controlling oxygen structures and the implications of oxygen transients for theory and reaction mechanisms in applied catalysis are considered.


Subject(s)
Coated Materials, Biocompatible/chemistry , Metals/chemistry , Models, Chemical , Models, Molecular , Oxygen/chemistry , Adsorption , Catalysis , Computer Simulation , Metals/analysis , Oxidation-Reduction , Oxygen/analysis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...