Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 391
Filter
1.
Biol Reprod ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836439

ABSTRACT

In pigs, the majority of embryonic mortality occurs when free-floating conceptuses (embryos/fetuses and associated placental membranes) elongate and the uterine-placental interface undergoes folding and develops areolae. Both periods involve proliferation, migration, and changes in morphology of cells that require ATP. We hypothesize that insufficient ATP in conceptus and uterine tissues contributes to conceptus loss in pigs. Creatine is stored in cells as phosphocreatine (PCr) for ATP regeneration through the creatine (Cr)-creatine kinase (CK)-PCr pathway. However, the expression of components of this pathway in pigs has not been examined throughout gestation. Results of qPCR analyses indicated increases in AGAT, GAMT, CKM, CKB, and SLC6A8 mRNAs in elongating porcine conceptuses and immunofluorescence microscopy localized GAMT, CKM, and CKB proteins to the trophectoderm of elongating conceptuses, to the columnar chorionic epithelial cells at the bottom of chorioallantoic troughs, and to endometrial luminal epithelium (LE) at the tops of the endometrial ridges of uterine-placental folds on Days 40, 60, and 90 of gestation. GAMT protein is expressed in endometrial LE at the uterine-placental interface, but immunostaining is more intense in LE at the bottoms of the endometrial ridges. Results of this study indicate that key elements of the pathway for creatine metabolism are expressed in cells of the conceptus, placenta, and uterus for potential production of ATP during two timepoints in pregnancy with a high demand for energy; elongation of the conceptus for implantation and development of uterine-placental folding during placentation.

2.
Genes Chromosomes Cancer ; 63(5): e23237, 2024 05.
Article in English | MEDLINE | ID: mdl-38722212

ABSTRACT

BACKGROUND: This study investigates the potential influence of genotype and parent-of-origin effects (POE) on the clinical manifestations of Lynch syndrome (LS) within families carrying (likely) disease-causing MSH6 germline variants. PATIENTS AND METHODS: A cohort of 1615 MSH6 variant carriers (310 LS families) was analyzed. Participants were categorized based on RNA expression and parental inheritance of the variant. Hazard ratios (HRs) were calculated using weighted Cox regression, considering external information to address ascertainment bias. The findings were cross-validated using the Prospective Lynch Syndrome Database (PLSD) for endometrial cancer (EC). RESULTS: No significant association was observed between genotype and colorectal cancer (CRC) risk (HR = 1.06, 95% confidence interval [CI]: 0.77-1.46). Patients lacking expected RNA expression exhibited a reduced risk of EC (Reference Cohort 1: HR = 0.68, 95% CI: 0.43-1.03; Reference Cohort 2: HR = 0.63, 95% CI: 0.46-0.87). However, these results could not be confirmed in the PLSD. Moreover, no association was found between POE and CRC risk (HR = 0.78, 95% CI: 0.52-1.17) or EC risk (Reference Cohort 1: HR = 0.93, 95% CI: 0.65-1.33; Reference Cohort 2: HR = 0.8, 95% CI: 0.64-1.19). DISCUSSION AND CONCLUSION: No evidence of POE was detected in MSH6 families. While RNA expression may be linked to varying risks of EC, further investigation is required to explore this observation.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , DNA-Binding Proteins , Genotype , Phenotype , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Female , Male , DNA-Binding Proteins/genetics , Middle Aged , Adult , Germ-Line Mutation , Aged , Genetic Predisposition to Disease , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology
3.
Sci Rep ; 14(1): 12477, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816533

ABSTRACT

Dysregulated Wnt/ß-catenin signaling is a common feature of colorectal cancer (CRC). The T-cell factor/lymphoid enhancer factor (TCF/LEF; hereafter, TCF) family of transcription factors are critical regulators of Wnt/ß-catenin target gene expression. Of the four TCF family members, TCF7L1 predominantly functions as a transcriptional repressor. Although TCF7L1 has been ascribed an oncogenic role in CRC, only a few target genes whose expression it regulates have been characterized in this cancer. Through transcriptome analyses of TCF7L1 regulated genes, we noted enrichment for those associated with cellular migration. By silencing and overexpressing TCF7L1 in CRC cell lines, we demonstrated that TCF7L1 promoted migration, invasion, and adhesion. We localized TCF7L1 binding across the CRC genome and overlapped enriched regions with transcriptome data to identify candidate target genes. The growth arrest-specific 1 (GAS1) gene was among these and we demonstrated that GAS1 is a critical mediator of TCF7L1-dependent CRC cell migratory phenotypes. Together, these findings uncover a novel role for TCF7L1 in repressing GAS1 expression to enhance migration and invasion of CRC cells.


Subject(s)
Cell Movement , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Transcription Factor 7-Like 1 Protein , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cell Movement/genetics , Cell Line, Tumor , Transcription Factor 7-Like 1 Protein/metabolism , Transcription Factor 7-Like 1 Protein/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Neoplasm Invasiveness , Cell Adhesion/genetics , Wnt Signaling Pathway
4.
Eur J Hum Genet ; 32(7): 871-875, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38778081

ABSTRACT

Two independent exome sequencing initiatives aimed to identify new genes involved in the predisposition to nonpolyposis colorectal cancer led to the identification of heterozygous loss-of-function variants in NPAT, a gene that encodes a cyclin E/CDK2 effector required for S phase entry and a coactivator of histone transcription, in two families with multiple members affected with colorectal cancer. Enrichment of loss-of-function and predicted deleterious NPAT variants was identified in familial/early-onset colorectal cancer patients compared to non-cancer gnomAD individuals, further supporting the association with the disease. Previous studies in Drosophila models showed that NPAT abrogation results in chromosomal instability, increase of double strand breaks, and induction of tumour formation. In line with these results, colorectal cancers with NPAT somatic variants and no DNA repair defects have significantly higher aneuploidy levels than NPAT-wildtype colorectal cancers. In conclusion, our findings suggest that constitutional inactivating NPAT variants predispose to mismatch repair-proficient nonpolyposis colorectal cancer.


Subject(s)
Germ-Line Mutation , Humans , Male , Female , Pedigree , Middle Aged , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Loss of Function Mutation , Adult , Aged , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology
5.
Nat Biomed Eng ; 8(4): 443-460, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561490

ABSTRACT

Allogeneic mesenchymal stromal cells (MSCs) are a safe treatment option for many disorders of the immune system. However, clinical trials using MSCs have shown inconsistent therapeutic efficacy, mostly owing to MSCs providing insufficient immunosuppression in target tissues. Here we show that antigen-specific immunosuppression can be enhanced by genetically modifying MSCs with chimaeric antigen receptors (CARs), as we show for E-cadherin-targeted CAR-MSCs for the treatment of graft-versus-host disease in mice. CAR-MSCs led to superior T-cell suppression and localization to E-cadherin+ colonic cells, ameliorating the animals' symptoms and survival rates. On antigen-specific stimulation, CAR-MSCs upregulated the expression of immunosuppressive genes and receptors for T-cell inhibition as well as the production of immunosuppressive cytokines while maintaining their stem cell phenotype and safety profile in the animal models. CAR-MSCs may represent a widely applicable therapeutic technology for enhancing immunosuppression.


Subject(s)
Graft vs Host Disease , Immunosuppression Therapy , Mesenchymal Stem Cells , Receptors, Chimeric Antigen , Animals , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Immunosuppression Therapy/methods , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Graft vs Host Disease/immunology , Humans , Mesenchymal Stem Cell Transplantation/methods , T-Lymphocytes/immunology , Cadherins/metabolism , Mice, Inbred C57BL , Cytokines/metabolism
6.
Mod Pathol ; 37(3): 100423, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38191122

ABSTRACT

Universal tumor screening in endometrial carcinoma (EC) is increasingly adopted to identify individuals at risk of Lynch syndrome (LS). These cases involve mismatch repair-deficient (MMRd) EC without MLH1 promoter hypermethylation (PHM). LS is confirmed through the identification of germline MMR pathogenic variants (PV). In cases where these are not detected, emerging evidence highlights the significance of double-somatic MMR gene alterations as a sporadic cause of MMRd, alongside POLE/POLD1 exonuclease domain (EDM) PV leading to secondary MMR PV. Our understanding of the incidence of different MMRd EC origins not related to MLH1-PHM, their associations with clinicopathologic characteristics, and the prognostic implications remains limited. In a combined analysis of the PORTEC-1, -2, and -3 trials (n = 1254), 84 MMRd EC not related to MLH1-PHM were identified that successfully underwent paired tumor-normal tissue next-generation sequencing of the MMR and POLE/POLD1 genes. Among these, 37% were LS associated (LS-MMRd EC), 38% were due to double-somatic hits (DS-MMRd EC), and 25% remained unexplained. LS-MMRd EC exhibited higher rates of MSH6 (52% vs 19%) or PMS2 loss (29% vs 3%) than DS-MMRd EC, and exclusively showed MMR-deficient gland foci. DS-MMRd EC had higher rates of combined MSH2/MSH6 loss (47% vs 16%), loss of >2 MMR proteins (16% vs 3%), and somatic POLE-EDM PV (25% vs 3%) than LS-MMRd EC. Clinicopathologic characteristics, including age at tumor onset and prognosis, did not differ among the various groups. Our study validates the use of paired tumor-normal next-generation sequencing to identify definitive sporadic causes in MMRd EC unrelated to MLH1-PHM. MMR immunohistochemistry and POLE-EDM mutation status can aid in the differentiation between LS-MMRd EC and DS-MMRd EC. These findings emphasize the need for integrating tumor sequencing into LS diagnostics, along with clear interpretation guidelines, to improve clinical management. Although not impacting prognosis, confirmation of DS-MMRd EC may release patients and relatives from burdensome LS surveillance.


Subject(s)
DNA Mismatch Repair , Endometrial Neoplasms , Female , Humans , DNA Mismatch Repair/genetics , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , Endometrial Neoplasms/pathology , Germ-Line Mutation , Mismatch Repair Endonuclease PMS2/genetics , Microsatellite Instability , DNA Methylation
7.
BMC Cancer ; 24(1): 104, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238650

ABSTRACT

BACKGROUND: Colibactin, a genotoxin produced by polyketide synthase harboring (pks+) bacteria, induces double-strand breaks and chromosome aberrations. Consequently, enrichment of pks+Escherichia coli in colorectal cancer and polyposis suggests a possible carcinogenic effect in the large intestine. Additionally, specific colibactin-associated mutational signatures; SBS88 and ID18 in the Catalogue of Somatic Mutations in Cancer database, are detected in colorectal carcinomas. Previous research showed that a recurrent APC splice variant perfectly fits SBS88. METHODS: In this study, we explore the presence of colibactin-associated signatures and fecal pks in an unexplained polyposis cohort. Somatic targeted Next-Generation Sequencing (NGS) was performed for 379 patients. Additionally, for a subset of 29 patients, metagenomics was performed on feces and mutational signature analyses using Whole-Genome Sequencing (WGS) on Formalin-Fixed Paraffin Embedded (FFPE) colorectal tissue blocks. RESULTS: NGS showed somatic APC variants fitting SBS88 or ID18 in at least one colorectal adenoma or carcinoma in 29% of patients. Fecal metagenomic analyses revealed enriched presence of pks genes in patients with somatic variants fitting colibactin-associated signatures compared to patients without variants fitting colibactin-associated signatures. Also, mutational signature analyses showed enrichment of SBS88 and ID18 in patients with variants fitting these signatures in NGS compared to patients without. CONCLUSIONS: These findings further support colibactins ability to mutagenize colorectal mucosa and contribute to the development of colorectal adenomas and carcinomas explaining a relevant part of patients with unexplained polyposis.


Subject(s)
Adenoma , Carcinoma , Colorectal Neoplasms , Polyketides , Humans , Mutation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Peptides/genetics , Escherichia coli/genetics , Adenoma/genetics
8.
Blood ; 143(3): 258-271, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-37879074

ABSTRACT

ABSTRACT: In the development of various strategies of anti-CD19 immunotherapy for the treatment of B-cell malignancies, it remains unclear whether CD19 monoclonal antibody therapy impairs subsequent CD19-targeted chimeric antigen receptor T-cell (CART19) therapy. We evaluated the potential interference between the CD19-targeting monoclonal antibody tafasitamab and CART19 treatment in preclinical models. Concomitant treatment with tafasitamab and CART19 showed major CD19 binding competition, which led to CART19 functional impairment. However, when CD19+ cell lines were pretreated with tafasitamab overnight and the unbound antibody was subsequently removed from the culture, CART19 function was not affected. In preclinical in vivo models, tafasitamab pretreatment demonstrated reduced incidence and severity of cytokine release syndrome and exhibited superior antitumor effects and overall survival compared with CART19 alone. This was associated with transient CD19 occupancy with tafasitamab, which in turn resulted in the inhibition of CART19 overactivation, leading to diminished CAR T apoptosis and pyroptosis of tumor cells.


Subject(s)
Antibodies, Monoclonal, Humanized , Immunotherapy , Therapeutic Index , Antigens, CD19 , Immunotherapy, Adoptive/methods
9.
Front Oncol ; 13: 1195814, 2023.
Article in English | MEDLINE | ID: mdl-37664053

ABSTRACT

Constitutional mismatch repair deficiency (CMMRD) syndrome is a rare autosomal recessive genetic disorder caused by biallelic germline mutations in one of the mismatch repair genes. Carriers are at exceptionally high risk for developing, typically in early life, hematological and brain malignancies, as well as cancers observed in Lynch syndrome. We report a homozygous MLH1 missense variant (c.1918C>A p.(Pro640Thr)) in a Tunisian patient with CMMRD syndrome and a family history of early-age colorectal cancer. The proband presented initially with colonic oligopolyposis and adenosquamous carcinoma of the caecum. He later developed several malignancies, including undifferentiated carcinoma of the parotid, grade 4 IDH-mutant astrocytoma, and ampulla of Vater adenocarcinoma. The patient was older than typical for this disease and had a remarkably prolonged survival despite developing four distinct aggressive malignancies. The current report highlights the challenges in assessing the pathogenicity of the identified variant and the remarkable phenotypic diversity in CMMRD.

10.
Med Sci Sports Exerc ; 55(12): 2143-2159, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37443459

ABSTRACT

ABSTRACT: Nearly 40 yr ago, Professor Dempsey delivered the 1985 ACSM Joseph B. Wolffe Memorial Lecture titled: "Is the lung built for exercise?" Since then, much experimental work has been directed at enhancing our understanding of the functional capacity of the respiratory system by applying complex methodologies to the study of exercise. This review summarizes a symposium entitled: "Revisiting 'Is the lung built for exercise?'" presented at the 2022 American College of Sports Medicine annual meeting, highlighting the progress made in the last three-plus decades and acknowledging new research questions that have arisen. We have chosen to subdivide our topic into four areas of active study: (i) the adaptability of lung structure to exercise training, (ii) the utilization of airway imaging to better understand how airway anatomy relates to exercising lung mechanics, (iii) measurement techniques of pulmonary gas exchange and their importance, and (iv) the interactions of the respiratory and cardiovascular system during exercise. Each of the four sections highlights gaps in our knowledge of the exercising lung. Addressing these areas that would benefit from further study will help us comprehend the intricacies of the lung that allow it to meet and adapt to the acute and chronic demands of exercise in health, aging, and disease.


Subject(s)
Exercise , Sports , Humans , Lung , Pulmonary Gas Exchange , Thorax
11.
Cancer Immunol Res ; 11(9): 1222-1236, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37378662

ABSTRACT

The receptor tyrosine kinase AXL is a member of the TYRO3, AXL, and proto-oncogene tyrosine-protein kinase MER family and plays pleiotropic roles in cancer progression. AXL is expressed in immunosuppressive cells, which contributes to decreased efficacy of immunotherapy. Therefore, we hypothesized that AXL inhibition could serve as a strategy to overcome resistance to chimeric antigen receptor T (CAR T)-cell therapy. To test this, we determined the impact of AXL inhibition on CD19-targeted CAR T (CART19)-cell functions. Our results demonstrate that T cells and CAR T cells express high levels of AXL. Specifically, higher levels of AXL on activated Th2 CAR T cells and M2-polarized macrophages were observed. AXL inhibition with small molecules or via genetic disruption in T cells demonstrated selective inhibition of Th2 CAR T cells, reduction of Th2 cytokines, reversal of CAR T-cell inhibition, and promotion of CAR T-cell effector functions. AXL inhibition is a novel strategy to enhance CAR T-cell functions through two independent, but complementary, mechanisms: targeting Th2 cells and reversing myeloid-induced CAR T-cell inhibition through selective targeting of M2-polarized macrophages.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Axl Receptor Tyrosine Kinase , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases/genetics
12.
Respir Physiol Neurobiol ; 315: 104099, 2023 09.
Article in English | MEDLINE | ID: mdl-37385421

ABSTRACT

The purpose of the study was to characterize exercise induced arterial hypoxemia (EIAH) in female masters athletes (FMA). We hypothesized that FMA would experience EIAH during treadmill running. Eight FMA (48-57 years) completed pulmonary function testing and an incremental exercise test until exhaustion (V̇O2max⁡ = 45.7 ± 6.5, range:35-54 ml/kg/min). On a separate day, the participants were instrumented with a radial arterial catheter and an esophageal temperature probe. Participants performed three to four constant load exercise tests at 60-70 %, 75 %, 90 %, 95 %, and 100 % of maximal oxygen uptake while sampling arterial blood and recording esophageal temperature. We found that FMA decrease their partial pressure of oxygen (86.0 ± 7.6, range:73-108 mmHg), arterial saturation (96.2 ± 1.2, range:93-98 %), and widen their alveolar to arterial oxygen difference (23.2 ± 8.8, range:5-42 mmHg) during all exercise intensities however, with variability in terms of severity and pattern. Our findings suggest that FMA experience EIAH however aerobic fitness appears unrelated to occurrence or severity (r = 0.13, p = 0.756).


Subject(s)
Hypoxia , Oxygen Consumption , Humans , Female , Exercise , Oxygen , Athletes
13.
Mod Pathol ; 36(9): 100240, 2023 09.
Article in English | MEDLINE | ID: mdl-37307877

ABSTRACT

Diagnosis of Lynch syndrome (LS) caused by a pathogenic germline MSH6 variant may be complicated by discordant immunohistochemistry (IHC) and/or by a microsatellite stable (MSS) phenotype. This study aimed to identify the various causes of the discordant phenotypes of colorectal cancer (CRC) and endometrial cancer (EC) in MSH6-associated LS. Data were collected from Dutch family cancer clinics. Carriers of a (likely) pathogenic MSH6 variant diagnosed with CRC or EC were categorized based on an microsatellite instability (MSI)/IHC test outcome that might fail to result in a diagnosis of LS (eg, retained staining of all 4 mismatch repair proteins, with or without an MSS phenotype, and other staining patterns). When tumor tissue was available, MSI and/or IHC were repeated. Next-generation sequencing (NGS) was performed in cases with discordant staining patterns. Data were obtained from 360 families with 1763 (obligate) carriers. MSH6 variant carriers with CRC or EC (n = 590) were included, consisting of 418 CRCs and 232 ECs. Discordant staining was reported in 77 cases (36% of MSI/IHC results). Twelve patients gave informed consent for further analysis of tumor material. Upon revision, 2 out of 3 MSI/IHC cases were found to be concordant with the MSH6 variant, and NGS showed that 4 discordant IHC results were sporadic rather than LS-associated tumors. In 1 case, somatic events explained the discordant phenotype. The use of reflex IHC mismatch repair testing, the current standard in most Western countries, may lead to the misdiagnosis of germline MSH6 variant carriers. The pathologist should point out that further diagnostics for inheritable colon cancer, including LS, should be considered in case of a strong positive family history. Germline DNA analysis of the mismatch repair genes, preferably as part of a larger gene panel, should therefore be considered in potential LS patients.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Endometrial Neoplasms , Female , Humans , Microsatellite Repeats , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Microsatellite Instability , Colonic Neoplasms/genetics , DNA Mismatch Repair/genetics , Endometrial Neoplasms/genetics , DNA-Binding Proteins/genetics , Colorectal Neoplasms/pathology
14.
Am J Ophthalmol Case Rep ; 30: 101850, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37131527

ABSTRACT

Purpose: To present a case of keratoconus progression following gender-affirming hormone therapy. Observations: A 28-year-old male-to-female transgender patient with potential past ocular history of subclinical keratoconus presented with subacute worsening myopia of both eyes (OU), 4 months after initiation of gender-affirming hormone therapy. A diagnosis of keratoconus was established based on slit-lamp exam and computerized corneal tomography. Notable indices were central corneal thinning and inferior steepening OU with maximum corneal curvatures of 58.3 D of the right eye (OD) and 77.7 D of the left eye (OS) and thinnest corneal thickness of 440 µm OD and 397 µm OS. After 8 months of continued hormone therapy, the patient's keratoconus continued to progress and thus corneal crosslinking was recommended and performed. Conclusions: Keratoconus progression and relapse has been suggested to have an association with sex hormone changes. We report a case of keratoconus progression following gender-affirming hormone therapy in a transgender patient. Our findings continue to support a correlative relationship between sex hormones and corneal ectasia pathophysiology. Further studies are needed to determine causality and to investigate the utility of screening corneal structure prior to the initiation of gender-affirming hormone therapies.

15.
Genes (Basel) ; 14(2)2023 02 14.
Article in English | MEDLINE | ID: mdl-36833408

ABSTRACT

Mutations in components of the Wnt/ß-catenin signaling pathway drive colorectal cancer (CRC), in part, by deregulating expression of genes controlled by the T-cell factor (TCF) family of transcription factors. TCFs contain a conserved DNA binding domain that mediates association with TCF binding elements (TBEs) within Wnt-responsive DNA elements (WREs). Intestinal stem cell marker, leucine-rich-repeat containing G-protein-coupled receptor 5 (LGR5), is a Wnt target gene that has been implicated in CRC stem cell plasticity. However, the WREs at the LGR5 gene locus and how TCF factors directly regulate LGR5 gene expression in CRC have not been fully defined. Here, we report that TCF family member, TCF7L1, plays a significant role in regulating LGR5 expression in CRC cells. We demonstrate that TCF7L1 binds to a novel promoter-proximal WRE through association with a consensus TBE at the LGR5 locus to repress LGR5 expression. Using CRISPR activation and interference (CRISPRa/i) technologies to direct epigenetic modulation, we demonstrate that this WRE is a critical regulator of LGR5 expression and spheroid formation capacity of CRC cells. Furthermore, we found that restoring LGR5 expression rescues the TCF7L1-mediated reduction in spheroid formation efficiency. These results demonstrate a role for TCF7L1 in repressing LGR5 gene expression to govern the spheroid formation potential of CRC cells.


Subject(s)
Colorectal Neoplasms , Receptors, G-Protein-Coupled , Transcription Factor 7-Like 1 Protein , Humans , beta Catenin/genetics , Colorectal Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Receptors, G-Protein-Coupled/genetics , Transcription Factors/metabolism
16.
HGG Adv ; 4(1): 100167, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36624813

ABSTRACT

To identify Lynch syndrome (LS) carriers, DNA mismatch repair (MMR) immunohistochemistry (IHC) is performed on colorectal cancers (CRCs). Upon subsequent LS diagnostics, MMR deficiency (MMRd) sometimes remains unexplained (UMMRd). Recently, the importance of complete LS diagnostics to explain UMMRd, involving MMR methylation, germline, and somatic analyses, was stressed. To explore why some MMRd CRCs remain unsolved, we performed a systematic review of the literature and mapped patients with UMMRd diagnosed in our center. A systematic literature search was performed in Ovid Medline, Embase, Web of Science, Cochrane CENTRAL, and Google Scholar for articles on UMMRd CRCs after complete LS diagnostics published until December 15, 2021. Additionally, UMMRd CRCs diagnosed in our center since 1993 were mapped. Of 754 identified articles, 17 were included, covering 74 patients with UMMRd. Five CRCs were microsatellite stable. Upon complete diagnostics, 39 patients had single somatic MMR hits, and six an MMR germline variant of unknown significance (VUS). Ten had somatic pathogenic variants (PVs) in POLD1, MLH3, MSH3, and APC. The remaining 14 patients were the only identifiable cases in the literature without a plausible identified cause of the UMMRd. Of those, nine were suspected to have LS. In our center, complete LS diagnostics in approximately 5,000 CRCs left seven MMRd CRCs unexplained. All had a somatic MMR hit or MMR germline VUS, indicative of a missed second MMR hit. In vitually all patients with UMMRd, complete LS diagnostics suggest MMR gene involvement. Optimizing detection of currently undetectable PVs and VUS interpretation might explain all UMMRd CRCs, considering UMMRd a case closed.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Humans , Colorectal Neoplasms/diagnosis , Neoplastic Syndromes, Hereditary/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis
18.
Front Comput Neurosci ; 16: 880742, 2022.
Article in English | MEDLINE | ID: mdl-35757231

ABSTRACT

Neurons in the brain are submerged into oscillating extracellular potential produced by synchronized synaptic currents. The dynamics of these oscillations is one of the principal characteristics of neurophysiological activity, broadly studied in basic neuroscience and used in applications. However, our interpretation of the brain waves' structure and hence our understanding of their functions depend on the mathematical and computational approaches used for data analysis. The oscillatory nature of the wave dynamics favors Fourier methods, which have dominated the field for several decades and currently constitute the only systematic approach to brain rhythms. In the following study, we outline an alternative framework for analyzing waves of local field potentials (LFPs) and discuss a set of new structures that it uncovers: a discrete set of frequency-modulated oscillatory processes-the brain wave oscillons and their transient spectral dynamics.

19.
J Physiol ; 600(18): 4105-4118, 2022 09.
Article in English | MEDLINE | ID: mdl-35751465

ABSTRACT

Cervical spinal cord injury (C-SCI) negatively impacts cardiac and respiratory function. As the heart and lungs are linked via the pulmonary circuit these systems are interdependent. Here, we utilized inspiratory and expiratory loading to assess whether augmenting the respiratory pump improves left-ventricular (LV) filling and output in individuals with motor-complete C-SCI. We hypothesized LV end-diastolic volume (LVEDV) would increase and decrease with inspiratory and expiratory loading, respectively. Participants (C-SCI: 7M/1F, 35 ± 7 years; able-bodied: 7M/1F, 32 ± 6 years) were assessed under five conditions during 45° head-up tilt; unloaded, inspiratory loading with -10 and -20 cmH2 O oesophageal pressure (Poes ) on inspiration, and expiratory loading with +10 and +20 cmH2 O Poes on expiration. An oesophageal balloon catheter monitored Poes , and LV structure and function were assessed by echocardiography. In C-SCI only, (1) +20 cmH2 O reduced LVEDV vs. unloaded (81 ± 15 vs. 88 ± 11 ml, P = 0.006); (2) heart rate was higher during +20 cmH2 O compared to unloaded (P = 0.001) and +10 cmH2 O (P = 0.002); (3) cardiac output was higher during +20 cmH2 O than unloaded (P = 0.002); and (4) end-expiratory lung volume was higher during +20 cmH2 O vs. unloaded (63 ± 10 vs. 55 ± 13% total lung capacity, P = 0.003) but was unaffected by inspiratory loading. In both groups, -10 and -20 cmH2 O had no significant effect on LVEDV. These findings suggest greater expiratory positive pressure acutely impairs LV filling in C-SCI, potentially via impaired venous return, mediastinal constraint and/or direct ventricular interaction subsequent to dynamic hyperinflation. Inspiratory loading did not significantly improve LV function in C-SCI and neither inspiratory nor expiratory loading affected cardiac function or lung volumes in able-bodied participants. KEY POINTS: Cervical spinal cord injury (C-SCI) alters both the cardiac and the respiratory system, but little is known about how these systems interact following injury. Here, we manipulated inspiratory or expiratory intrathoracic pressure (ITP) to mechanistically test the role of the respiratory pump in circulatory function in highly trained individuals with C-SCI and an able-bodied reference group. In individuals with C-SCI, greater ITP during expiratory loading caused dynamic hyperinflation that was associated with impaired left-ventricular filling. More negative ITP during inspiratory loading did not significantly alter left-ventricular volumes in either group. Interventions that prevent dynamic hyperinflation and/or enhance the ability to generate expiratory pressures may help preserve left-ventricular filling in individuals with C-SCI.


Subject(s)
Cervical Cord , Spinal Cord Injuries , Heart Ventricles , Humans , Lung , Respiration , Ventricular Function, Left
20.
Clin Physiol Funct Imaging ; 42(5): 308-319, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35522086

ABSTRACT

Optical coherence tomography (OCT) is an imaging methodology that can be used to assess human airways. OCT avoids the harmful effects of ionizing radiation and has a high spatial resolution making it well suited for imaging the structure of small airways. Analysis of OCT airway images has typically been performed manually by tracing the airway with a relatively high coefficient of variation. The purpose of this study was to develop an analysis tool to reduce the inter- and intra-observer reproducibility of OCT and improve the ability to detect differences in airways. OCT images from healthy, young human volunteers were used to develop and test the OCT software. Measurement software was developed to allow the conversion of the original image into a grayscale image and was followed by an enhancement operation to brighten the image, and contour measurement. A total of 140 OCT images, 70 small (<2 mm) and 70 medium (2-4 mm) sized airways were analyzed. The inter- and intraobserver reproducibility of airway measurements ranged for strong to very strong in the small-sized airways. For medium-sized airways the reproducibility was considered moderate. Bland-Altman bias was low between observers and observations for all measures. The minimal detectable differences in the airway measurements with our semi-automated software were lower relative to manual tracing in medium-sized airways. Our software improves the ability to perform quantitative OCT analysis and may help to quantify the extent of airway remodelling in respiratory disease or elite athletes in future studies.


Subject(s)
Software , Tomography, Optical Coherence , Humans , Reproducibility of Results , Tomography, Optical Coherence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...