Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Reproduction ; 130(2): 241-50, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16049162

ABSTRACT

Uterine function is primarily controlled by the combined actions of oestrogen and progesterone working through their cognate nuclear receptors. The mechanism of establishment of pregnancy in the mare is of interest because it involves prolonged pre-attachment and conceptus migration phases, and both invasive and non-invasive placental cell types, and as such has been an important comparative model. This study characterised regulation of oestrogen (ER) and progesterone (PR) receptors in the endometrium of the mare during the oestrous cycle and early pregnancy. Endometrial tissues collected during the oestrous cycle and early pregnancy were analysed for steady-state levels of ER and PR mRNA and protein. Steady-state levels of ER and PR mRNA were highest on days 0, 17 and 20 in cyclic mares and lowest on days 11 and 14. A day-by-status interaction was detected, indicating that day 17 and day 20 pregnant mares exhibited low levels of ER and PR compared with the corresponding days of the oestrous cycle. In situ hybridisation analyses showed receptor mRNA localisation primarily in the luminal epithelium (LE), glandular epithelium (GE) and stroma around oestrus. During dioestrus and early pregnancy, receptors were not detected in the LE, and were lower in the stroma and deeper GE. Changes in hybridisation intensity in these cell types were consistent with changes in mRNA levels detected by slot-blot hybridisation. ER and PR proteins were detected in the nuclei of LE, GE and stromal cells. Consistent with results from in situ hybridisation, levels of ER and PR immunoreactivity were higher around oestrus, declined to low levels during dioestrus and remained low during early pregnancy. Results described here for temporal and spatial changes in steroid receptor gene expression in mares show the greatest similarities with those described for cattle and sheep.


Subject(s)
Endometrium/chemistry , Estrogen Receptor alpha/analysis , Estrous Cycle/metabolism , Horses/metabolism , Pregnancy, Animal/metabolism , Receptors, Progesterone/analysis , Animals , Blotting, Northern/methods , Estrogen Receptor alpha/genetics , Female , Immunohistochemistry/methods , In Situ Hybridization/methods , Pregnancy , RNA, Messenger/analysis , Receptors, Progesterone/genetics
2.
J Anim Sci ; 81(6): 1552-61, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12817504

ABSTRACT

Pregnancy and interferon-tau (IFN tau) upregulate uterine Mx gene expression in ewes; however, the only known role for Mx is in the immune response to viral infection. We hypothesize that Mx functions as a conceptus-induced component of the anti-luteolytic mechanism and/or regulator of endometrial secretion or uterine remodeling during early pregnancy. This study was conducted to determine the effects of early pregnancy on uterine Mx expression in domestic farm species with varied mechanisms of pregnancy recognition. Endometrium from cows, gilts, and mares was collected during the first 20 d of the estrous cycle or pregnancy, and total messenger RNA (mRNA) and protein were analyzed for steady-state levels of Mx mRNA and protein. Northern blot analysis of Mx mRNA detected an approximately 2.5 Kb of mRNA in endometrium from each species. In pregnant cows, steady-state levels of Mx mRNA increased 10-fold (P < 0.05) above levels observed in cyclic cows by d 15 to 18. In cyclic gilts, slot blot analysis indicated that endometrial Mx mRNA levels did not change between d 5 and 18 of the cycle. However, in pregnant gilts, Mx levels tended (P = 0.06) to be elevated two-fold on d 16 only, and in situ hybridization indicated that this increase occurred in the stroma. In mares, Mx mRNA was low, but detectable, and did not change between ovulation (d 0) and d 20, regardless of reproductive status. Western blot analysis revealed multiple immunoreactive Mx protein bands in each species. One band was specific to pregnancy in cows. As in ewes, in situ hybridization analysis indicated that Mx mRNA was strongly expressed in the luminal epithelium, stroma, and myometrium by d 18 in cows. However, on d 14 in gilts, Mx was expressed primarily in the stroma, and on d 14 in mares, low levels of Mx expression were confined largely to the luminal epithelium. The uteruses of cows, gilts, and mares express Mx, and expression is upregulated during pregnancy in cows and gilts--animals whose conceptuses secrete interferons during early pregnancy, but that possess different mechanisms for pregnancy recognition.


Subject(s)
Estrus/metabolism , GTP-Binding Proteins/biosynthesis , Gene Expression Regulation/physiology , Pregnancy, Animal/physiology , Uterus/metabolism , Animals , Blotting, Northern/veterinary , Blotting, Western/veterinary , Cattle , Female , Horses , In Situ Hybridization/veterinary , Myxovirus Resistance Proteins , Pregnancy , Pregnancy, Animal/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...