Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Emotion ; 24(2): 495-505, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37561517

ABSTRACT

People readily and automatically process facial emotion and identity, and it has been reported that these cues are processed both dependently and independently. However, this question of identity independent encoding of emotions has only been examined using posed, often exaggerated expressions of emotion, that do not account for the substantial individual differences in emotion recognition. In this study, we ask whether people's unique beliefs of how emotions should be reflected in facial expressions depend on the identity of the face. To do this, we employed a genetic algorithm where participants created facial expressions to represent different emotions. Participants generated facial expressions of anger, fear, happiness, and sadness, on two different identities. Facial features were controlled by manipulating a set of weights, allowing us to probe the exact positions of faces in high-dimensional expression space. We found that participants created facial expressions belonging to each identity in a similar space that was unique to the participant, for angry, fearful, and happy expressions, but not sad. However, using a machine learning algorithm that examined the positions of faces in expression space, we also found systematic differences between the two identities' expressions across participants. This suggests that participants' beliefs of how an emotion should be reflected in a facial expression are unique to them and identity independent, although there are also some systematic differences in the facial expressions between two identities that are common across all individuals. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Emotions , Facial Recognition , Humans , Anger , Happiness , Fear , Sadness , Facial Expression
2.
World Psychiatry ; 22(1): 129-149, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36640395

ABSTRACT

Neurodevelopmental disorders - including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, communication disorders, intellectual disability, motor disorders, specific learning disorders, and tic disorders - manifest themselves early in development. Valid, reliable and broadly usable biomarkers supporting a timely diagnosis of these disorders would be highly relevant from a clinical and public health standpoint. We conducted the first systematic review of studies on candidate diagnostic biomarkers for these disorders in children and adolescents. We searched Medline and Embase + Embase Classic with terms relating to biomarkers until April 6, 2022, and conducted additional targeted searches for genome-wide association studies (GWAS) and neuroimaging or neurophysiological studies carried out by international consortia. We considered a candidate biomarker as promising if it was reported in at least two independent studies providing evidence of sensitivity and specificity of at least 80%. After screening 10,625 references, we retained 780 studies (374 biochemical, 203 neuroimaging, 133 neurophysiological and 65 neuropsychological studies, and five GWAS), including a total of approximately 120,000 cases and 176,000 controls. While the majority of the studies focused simply on associations, we could not find any biomarker for which there was evidence - from two or more studies from independent research groups, with results going into the same direction - of specificity and sensitivity of at least 80%. Other important metrics to assess the validity of a candidate biomarker, such as positive predictive value and negative predictive value, were infrequently reported. Limitations of the currently available studies include mostly small sample size, heterogeneous approaches and candidate biomarker targets, undue focus on single instead of joint biomarker signatures, and incomplete accounting for potential confounding factors. Future multivariable and multi-level approaches may be best suited to find valid candidate biomarkers, which will then need to be validated in external, independent samples and then, importantly, tested in terms of feasibility and cost-effectiveness, before they can be implemented in daily clinical practice.

4.
Proc Natl Acad Sci U S A ; 119(45): e2201380119, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36322724

ABSTRACT

Emotional communication relies on a mutual understanding, between expresser and viewer, of facial configurations that broadcast specific emotions. However, we do not know whether people share a common understanding of how emotional states map onto facial expressions. This is because expressions exist in a high-dimensional space too large to explore in conventional experimental paradigms. Here, we address this by adapting genetic algorithms and combining them with photorealistic three-dimensional avatars to efficiently explore the high-dimensional expression space. A total of 336 people used these tools to generate facial expressions that represent happiness, fear, sadness, and anger. We found substantial variability in the expressions generated via our procedure, suggesting that different people associate different facial expressions to the same emotional state. We then examined whether variability in the facial expressions created could account for differences in performance on standard emotion recognition tasks by asking people to categorize different test expressions. We found that emotion categorization performance was explained by the extent to which test expressions matched the expressions generated by each individual. Our findings reveal the breadth of variability in people's representations of facial emotions, even among typical adult populations. This has profound implications for the interpretation of responses to emotional stimuli, which may reflect individual differences in the emotional category people attribute to a particular facial expression, rather than differences in the brain mechanisms that produce emotional responses.


Subject(s)
Facial Recognition , Individuality , Adult , Humans , Facial Expression , Emotions/physiology , Anger/physiology , Algorithms
5.
R Soc Open Sci ; 8(10): 202251, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34659775

ABSTRACT

Emotional facial expressions critically impact social interactions and cognition. However, emotion research to date has generally relied on the assumption that people represent categorical emotions in the same way, using standardized stimulus sets and overlooking important individual differences. To resolve this problem, we developed and tested a task using genetic algorithms to derive assumption-free, participant-generated emotional expressions. One hundred and five participants generated a subjective representation of happy, angry, fearful and sad faces. Population-level consistency was observed for happy faces, but fearful and sad faces showed a high degree of variability. High test-retest reliability was observed across all emotions. A separate group of 108 individuals accurately identified happy and angry faces from the first study, while fearful and sad faces were commonly misidentified. These findings are an important first step towards understanding individual differences in emotion representation, with the potential to reconceptualize the way we study atypical emotion processing in future research.

6.
Dev Psychopathol ; : 1-11, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34657646

ABSTRACT

Neuropsychological evidence supports the developmental taxonomy theory of antisocial behavior, suggesting that abnormal brain development distinguishes life-course-persistent from adolescence-limited antisocial behavior. Recent neuroimaging work confirmed that prospectively-measured life-course-persistent antisocial behavior is associated with differences in cortical brain structure. Whether this extends to subcortical brain structures remains uninvestigated. This study compared subcortical gray-matter volumes between 672 members of the Dunedin Study previously defined as exhibiting life-course-persistent, adolescence-limited or low-level antisocial behavior based on repeated assessments at ages 7-26 years. Gray-matter volumes of 10 subcortical structures were compared across groups. The life-course-persistent group had lower volumes of amygdala, brain stem, cerebellum, hippocampus, pallidum, thalamus, and ventral diencephalon compared to the low-antisocial group. Differences between life-course-persistent and adolescence-limited individuals were comparable in effect size to differences between life-course-persistent and low-antisocial individuals, but were not statistically significant due to less statistical power. Gray-matter volumes in adolescence-limited individuals were near the norm in this population-representative cohort and similar to volumes in low-antisocial individuals. Although this study could not establish causal links between brain volume and antisocial behavior, it constitutes new biological evidence that all people with antisocial behavior are not the same, supporting a need for greater developmental and diagnostic precision in clinical, forensic, and policy-based interventions.

7.
Front Psychiatry ; 12: 807839, 2021.
Article in English | MEDLINE | ID: mdl-35115973

ABSTRACT

BACKGROUND: In mental health, comorbidities are the norm rather than the exception. However, current meta-analytic methods for summarizing the neural correlates of mental disorders do not consider comorbidities, reducing them to a source of noise and bias rather than benefitting from their valuable information. OBJECTIVES: We describe and validate a novel neuroimaging meta-analytic approach that focuses on comorbidities. In addition, we present the protocol for a meta-analysis of all major mental disorders and their comorbidities. METHODS: The novel approach consists of a modification of Seed-based d Mapping-with Permutation of Subject Images (SDM-PSI) in which the linear models have no intercept. As in previous SDM meta-analyses, the dependent variable is the brain anatomical difference between patients and controls in a voxel. However, there is no primary disorder, and the independent variables are the percentages of patients with each disorder and each pair of potentially comorbid disorders. We use simulations to validate and provide an example of this novel approach, which correctly disentangled the abnormalities associated with each disorder and comorbidity. We then describe a protocol for conducting the new meta-analysis of all major mental disorders and their comorbidities. Specifically, we will include all voxel-based morphometry (VBM) studies of mental disorders for which a meta-analysis has already been published, including at least 10 studies. We will use the novel approach to analyze all included studies in two separate single linear models, one for children/adolescents and one for adults. DISCUSSION: The novel approach is a valid method to focus on comorbidities. The meta-analysis will yield a comprehensive atlas of the neuroanatomy of all major mental disorders and their comorbidities, which we hope might help develop potential diagnostic and therapeutic tools.

8.
Psychol Med ; 50(6): 894-919, 2020 04.
Article in English | MEDLINE | ID: mdl-32216846

ABSTRACT

BACKGROUND: People with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) have abnormalities in frontal, temporal, parietal and striato-thalamic networks. It is unclear to what extent these abnormalities are distinctive or shared. This comparative meta-analysis aimed to identify the most consistent disorder-differentiating and shared structural and functional abnormalities. METHODS: Systematic literature search was conducted for whole-brain voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies of cognitive control comparing people with ASD or ADHD with typically developing controls. Regional gray matter volume (GMV) and fMRI abnormalities during cognitive control were compared in the overall sample and in age-, sex- and IQ-matched subgroups with seed-based d mapping meta-analytic methods. RESULTS: Eighty-six independent VBM (1533 ADHD and 1295 controls; 1445 ASD and 1477 controls) and 60 fMRI datasets (1001 ADHD and 1004 controls; 335 ASD and 353 controls) were identified. The VBM meta-analyses revealed ADHD-differentiating decreased ventromedial orbitofrontal (z = 2.22, p < 0.0001) but ASD-differentiating increased bilateral temporal and right dorsolateral prefrontal GMV (zs ⩾ 1.64, ps ⩽ 0.002). The fMRI meta-analyses of cognitive control revealed ASD-differentiating medial prefrontal underactivation but overactivation in bilateral ventrolateral prefrontal cortices and precuneus (zs ⩾ 1.04, ps ⩽ 0.003). During motor response inhibition specifically, ADHD relative to ASD showed right inferior fronto-striatal underactivation (zs ⩾ 1.14, ps ⩽ 0.003) but shared right anterior insula underactivation. CONCLUSIONS: People with ADHD and ASD have mostly distinct structural abnormalities, with enlarged fronto-temporal GMV in ASD and reduced orbitofrontal GMV in ADHD; and mostly distinct functional abnormalities, which were more pronounced in ASD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/physiopathology , Autism Spectrum Disorder/physiopathology , Brain/physiopathology , Adolescent , Adult , Cerebral Cortex/physiopathology , Child , Cognition/physiology , Female , Gray Matter/physiopathology , Humans , Magnetic Resonance Imaging , Male , Parietal Lobe/physiopathology , Thalamus/physiopathology , Young Adult
9.
Lancet Psychiatry ; 7(3): 245-253, 2020 03.
Article in English | MEDLINE | ID: mdl-32078822

ABSTRACT

BACKGROUND: Studies with behavioural and neuropsychological tests have supported the developmental taxonomy theory of antisocial behaviour, which specifies abnormal brain development as a fundamental aspect of life-course-persistent antisocial behaviour, but no study has characterised features of brain structure associated with life-course-persistent versus adolescence-limited trajectories, as defined by prospective data. We aimed to determine whether life-course-persistent antisocial behaviour is associated with neurocognitive abnormalities by testing the hypothesis that it is also associated with brain structure abnormalities. METHODS: We used structural MRI data collected at 45 years of age from participants in the Dunedin Study, a population-representative longitudinal birth cohort of 1037 individuals born between April 1, 1972, and March 31, 1973, in Dunedin, New Zealand, who were resident in the province and who participated in the first assessment at 3 years of age. Participants underwent MRI, and mean global cortical surface area and cortical thickness were extracted for each participant. Participants had been previously subtyped as exhibiting life-course-persistent, adolescence-limited, or no history of persistent antisocial behaviour (ie, a low trajectory group) based on informant-reported and self-reported conduct problems from the ages of 7 years to 26 years. Study personnel who processed the MRI images were masked to antisocial group membership. We used linear estimated ordinary least squares regressions to compare each antisocial trajectory group (life-course persistent and adolescence limited) with the low trajectory group to examine whether antisocial behaviour was related to abnormalities in mean global surface area and mean cortical thickness. Next, we used parcel-wise linear regressions to identify antisocial trajectory group differences in surface area and cortical thickness. All results were controlled for sex and false discovery rate corrected. FINDINGS: Data from 672 participants were analysed, and 80 (12%) were classified as having life-course-persistent antisocial behaviour, 151 (23%) as having adolescence-limited antisocial behaviour, and 441 (66%) as having low antisocial behaviour. Individuals on the life-course-persistent trajectory had a smaller mean surface area (standardised ß=-0·18 [95% CI -0·24 to -0·11]; p<0·0001) and lower mean cortical thickness (standardised ß=-0·10 [95% CI -0·19 to -0·02]; p=0·020) than did those in the low group. Compared with the low group, the life-course-persistent group had reduced surface area in 282 of 360 anatomically defined parcels and thinner cortex in 11 of 360 parcels encompassing circumscribed frontal and temporal regions associated with executive function, affect regulation, and motivation. Widespread differences in brain surface morphometry were not observed for the adolescence-limited group compared with either non-antisocial behaviour or life-course-persistent groups. INTERPRETATION: These analyses provide initial evidence that differences in brain surface morphometry are associated with life-course-persistent, but not adolescence-limited, antisocial behaviour. As such, the analyses are consistent with the developmental taxonomy theory of antisocial behaviour and highlight the importance of using prospective longitudinal data to define different patterns of antisocial behaviour development. FUNDING: US National Institute on Aging, Health Research Council of New Zealand, New Zealand Ministry of Business, Innovation and Employment, UK Medical Research Council, Avielle Foundation, and Wellcome Trust.


Subject(s)
Antisocial Personality Disorder , Cerebral Cortex , Magnetic Resonance Imaging/methods , Adolescent , Adolescent Behavior/physiology , Adolescent Behavior/psychology , Antisocial Personality Disorder/diagnosis , Antisocial Personality Disorder/psychology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Child, Preschool , Correlation of Data , Female , Humans , Longitudinal Studies , Male , Mental Status and Dementia Tests , Middle Aged , New Zealand , Organ Size , Psychopathology
10.
Brain Neurosci Adv ; 2: 2398212818774223, 2018 Jan.
Article in English | MEDLINE | ID: mdl-30167466

ABSTRACT

Anxiety disorders are the most common cause of mental ill health in the developed world, but our understanding of symptoms and treatments is not presently grounded in knowledge of the underlying neurobiological mechanisms. In this review, we discuss accumulating work that points to a role for prefrontal-subcortical brain circuitry in driving a core psychological symptom of anxiety disorders - negative affective bias. Specifically, we point to converging work across humans and animal models, suggesting a reciprocal relationship between dorsal and ventral prefrontal-amygdala circuits in promoting and inhibiting negative bias, respectively. We discuss how the developmental trajectory of these circuits may lead to the onset of anxiety during adolescence and, moreover, how effective pharmacological and psychological treatments may serve to shift the balance of activity within this circuitry to ameliorate negative bias symptoms. Together, these findings may bring us closer to a mechanistic, neurobiological understanding of anxiety disorders and their treatment.

11.
Article in English | MEDLINE | ID: mdl-29706587

ABSTRACT

BACKGROUND: The aim of the current paper is to provide the first comparison of computational mechanisms and neurofunctional substrates in adolescents with attention-deficit/hyperactivity disorder (ADHD) and adolescents with obsessive-compulsive disorder (OCD) during decision making under ambiguity. METHODS: Sixteen boys with ADHD, 20 boys with OCD, and 20 matched control subjects (12-18 years of age) completed a functional magnetic resonance imaging version of the Iowa Gambling Task. Brain activation was compared between groups using three-way analysis of covariance. Hierarchical Bayesian analysis was used to compare computational modeling parameters between groups. RESULTS: Patient groups shared reduced choice consistency and relied less on reinforcement learning during decision making relative to control subjects, while adolescents with ADHD alone demonstrated increased reward sensitivity. During advantageous choices, both disorders shared underactivation in ventral striatum, while OCD patients showed disorder-specific underactivation in the ventromedial orbitofrontal cortex. During outcome evaluation, shared underactivation to losses in patients relative to control subjects was found in the medial prefrontal cortex and shared underactivation to wins was found in the left putamen/caudate. ADHD boys showed disorder-specific dysfunction in the right putamen/caudate, which was activated more to losses in patients with ADHD but more to wins in control subjects. CONCLUSIONS: The findings suggest shared deficits in using learned reward expectancies to guide decision making, as well as shared dysfunction in medio-fronto-striato-limbic brain regions. However, findings of unique dysfunction in the ventromedial orbitofrontal cortex in OCD and in the right putamen in ADHD indicate additional, disorder-specific abnormalities and extend similar findings from inhibitory control tasks in the disorders to the domain of decision making under ambiguity.


Subject(s)
Attention Deficit Disorder with Hyperactivity/physiopathology , Corpus Striatum/physiopathology , Decision Making/physiology , Functional Neuroimaging/methods , Obsessive-Compulsive Disorder/physiopathology , Prefrontal Cortex/physiopathology , Reward , Adolescent , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Child , Corpus Striatum/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Obsessive-Compulsive Disorder/diagnostic imaging , Prefrontal Cortex/diagnostic imaging
12.
Article in English | MEDLINE | ID: mdl-29167833

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) are often comorbid and share similarities across some cognitive phenotypes, including certain aspects of attention. However, no functional magnetic resonance imaging studies have compared the underlying neural mechanisms contributing to these shared phenotypes. METHODS: Age- and IQ-matched boys (11-17 years old) with ASD (n = 20), boys with OCD (n = 20), and healthy control boys (n = 20) performed a parametrically modulated psychomotor vigilance functional magnetic resonance imaging task. Brain activation and performance were compared among adolescents with OCD, adolescents with ASD, and control adolescents. RESULTS: Whereas boys with ASD and OCD were not impaired on task performance, there was a significant group by attention load interaction in several brain regions. With increasing attention load, left inferior frontal cortex/insula and left inferior parietal lobe/pre/post-central gyrus were progressively less activated in boys with OCD relative to the other two groups. In addition, boys with OCD showed progressively increased activation with increasing attention load in rostromedial prefrontal/anterior cingulate cortex relative to boys with ASD and control boys. Shared neurofunctional abnormalities between boys with ASD and boys with OCD included increased activation with increasing attention load in cerebellum and occipital regions, possibly reflecting increased default mode network activation. CONCLUSIONS: This first functional magnetic resonance imaging study to compare boys with ASD and OCD showed shared abnormalities in posterior cerebellar-occipital brain regions. However, boys with OCD showed a disorder-specific pattern of reduced activation in left inferior frontal and temporo-parietal regions but increased activation of medial frontal regions, which may potentially be related to neurobiological mechanisms underlying cognitive and clinical phenotypes of OCD.

13.
Psychiatry Res Neuroimaging ; 269: 97-105, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-28988149

ABSTRACT

Both Attention-Deficit/Hyperactivity Disorder (ADHD) and Obsessive-Compulsive Disorder (OCD) are associated with choice impulsivity, i.e. the tendency to prefer smaller immediate rewards over larger delayed rewards. However, the extent to which this impulsivity is mediated by shared or distinct underlying neural mechanisms is unclear. Twenty-six boys with ADHD, 20 boys with OCD and 20 matched controls (aged 12-18) completed an fMRI version of an individually adjusted temporal discounting (TD) task which requires choosing between a variable amount of money now or £100 in one week, one month or one year. Activations to immediate and delayed reward choices were compared between groups using a three-way ANCOVA. ADHD patients had steeper discounting rates on the task relative to controls. OCD patients did not differ from controls or patients with ADHD. Patients with ADHD and OCD showed predominantly shared activation deficits during TD in fronto-striato-insular-cerebellar regions responsible for self-control and temporal foresight, suggesting that choice impulsivity is mediated by overlapping neural dysfunctions in both disorders. OCD patients alone showed dysfunction relative to controls in right orbitofrontal and rostrolateral prefrontal cortex, extending previous findings of abnormalities in these regions in OCD to the domain of choice impulsiveness.


Subject(s)
Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Delay Discounting/physiology , Obsessive-Compulsive Disorder/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Reaction Time/physiology , Self-Control , Adolescent , Attention Deficit Disorder with Hyperactivity/physiopathology , Child , Choice Behavior/physiology , Humans , Magnetic Resonance Imaging/methods , Male , Obsessive-Compulsive Disorder/physiopathology , Prefrontal Cortex/physiopathology , Reward
14.
Cereb Cortex ; 27(12): 5804-5816, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29045575

ABSTRACT

Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) often share phenotypes of repetitive behaviors, possibly underpinned by abnormal decision-making. To compare neural correlates underlying decision-making between these disorders, brain activation of boys with ASD (N = 24), OCD (N = 20) and typically developing controls (N = 20) during gambling was compared, and computational modeling compared performance. Patients were unimpaired on number of risky decisions, but modeling showed that both patient groups had lower choice consistency and relied less on reinforcement learning compared to controls. ASD individuals had disorder-specific choice perseverance abnormalities compared to OCD individuals. Neurofunctionally, ASD and OCD boys shared dorsolateral/inferior frontal underactivation compared to controls during decision-making. During outcome anticipation, patients shared underactivation compared to controls in lateral inferior/orbitofrontal cortex and ventral striatum. During reward receipt, ASD boys had disorder-specific enhanced activation in inferior frontal/insular regions relative to OCD boys and controls. Results showed that ASD and OCD individuals shared decision-making strategies that differed from controls to achieve comparable performance to controls. Patients showed shared abnormalities in lateral-(orbito)fronto-striatal reward circuitry, but ASD boys had disorder-specific lateral inferior frontal/insular overactivation, suggesting that shared and disorder-specific mechanisms underpin decision-making in these disorders. Findings provide evidence for shared neurobiological substrates that could serve as possible future biomarkers.


Subject(s)
Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology , Brain/physiopathology , Decision Making/physiology , Obsessive-Compulsive Disorder/physiopathology , Obsessive-Compulsive Disorder/psychology , Adolescent , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Child , Computer Simulation , Feedback, Psychological/physiology , Formative Feedback , Gambling/diagnostic imaging , Gambling/physiopathology , Gambling/psychology , Humans , Magnetic Resonance Imaging , Male , Models, Neurological , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Neuropsychological Tests , Obsessive-Compulsive Disorder/diagnostic imaging , Reinforcement, Psychology
15.
Cogn Affect Behav Neurosci ; 17(6): 1098-1113, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28913727

ABSTRACT

Insufficient sleep, as well as the incidence of anxiety disorders, both peak during adolescence. While both conditions present perturbations in fear-processing-related neurocircuitry, it is unknown whether these neurofunctional alterations directly link anxiety and compromised sleep in adolescents. Fourteen anxious adolescents (AAs) and 19 healthy adolescents (HAs) were compared on a measure of sleep amount and neural responses to negatively valenced faces during fMRI. Group differences in neural response to negative faces emerged in the dorsal anterior cingulate cortex (dACC) and the hippocampus. In both regions, correlation of sleep amount with BOLD activation was positive in AAs, but negative in HAs. Follow-up psychophysiological interaction (PPI) analyses indicated positive connectivity between dACC and dorsomedial prefrontal cortex, and between hippocampus and insula. This connectivity was correlated negatively with sleep amount in AAs, but positively in HAs. In conclusion, the presence of clinical anxiety modulated the effects of sleep-amount on neural reactivity to negative faces differently among this group of adolescents, which may contribute to different clinical significance and outcomes of sleep disturbances in healthy adolescents and patients with anxiety disorders.


Subject(s)
Anxiety Disorders/physiopathology , Brain/physiology , Brain/physiopathology , Facial Recognition/physiology , Fear/physiology , Sleep/physiology , Adolescent , Anxiety Disorders/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Cerebrovascular Circulation/physiology , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Neural Pathways/physiopathology , Neuropsychological Tests , Oxygen/blood , Sleep Deprivation/diagnostic imaging , Sleep Deprivation/physiopathology , Sleep Deprivation/psychology
16.
Neuroimage Clin ; 15: 181-193, 2017.
Article in English | MEDLINE | ID: mdl-28529874

ABSTRACT

Patients with Attention-Deficit/Hyperactivity Disorder (ADHD) and obsessive/compulsive disorder (OCD) share problems with sustained attention, and are proposed to share deficits in switching between default mode and task positive networks. The aim of this study was to investigate shared and disorder-specific brain activation abnormalities during sustained attention in the two disorders. Twenty boys with ADHD, 20 boys with OCD and 20 age-matched healthy controls aged between 12 and 18 years completed a functional magnetic resonance imaging (fMRI) version of a parametrically modulated sustained attention task with a progressively increasing sustained attention load. Performance and brain activation were compared between groups. Only ADHD patients were impaired in performance. Group by sustained attention load interaction effects showed that OCD patients had disorder-specific middle anterior cingulate underactivation relative to controls and ADHD patients, while ADHD patients showed disorder-specific underactivation in left dorsolateral prefrontal cortex/dorsal inferior frontal gyrus (IFG). ADHD and OCD patients shared left insula/ventral IFG underactivation and increased activation in posterior default mode network relative to controls, but had disorder-specific overactivation in anterior default mode regions, in dorsal anterior cingulate for ADHD and in anterior ventromedial prefrontal cortex for OCD. In sum, ADHD and OCD patients showed mostly disorder-specific patterns of brain abnormalities in both task positive salience/ventral attention networks with lateral frontal deficits in ADHD and middle ACC deficits in OCD, as well as in their deactivation patterns in medial frontal DMN regions. The findings suggest that attention performance in the two disorders is underpinned by disorder-specific activation patterns.


Subject(s)
Attention Deficit Disorder with Hyperactivity/physiopathology , Attention/physiology , Brain Mapping/methods , Cerebral Cortex/physiopathology , Obsessive-Compulsive Disorder/physiopathology , Adolescent , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Child , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Humans , Magnetic Resonance Imaging , Male , Obsessive-Compulsive Disorder/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology
17.
Biol Psychiatry ; 82(2): 83-102, 2017 07 15.
Article in English | MEDLINE | ID: mdl-27887721

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) share inhibitory control deficits possibly underlying poor control over stereotyped and repetitive and compulsive behaviors, respectively. However, it is unclear whether these symptom profiles are mediated by common or distinct neural profiles. This comparative multimodal meta-analysis assessed shared and disorder-specific neuroanatomy and neurofunction of inhibitory functions. METHODS: A comparative meta-analysis of 62 voxel-based morphometry and 26 functional magnetic resonance imaging (fMRI) studies of inhibitory control was conducted comparing gray matter volume and activation abnormalities between patients with ASD (structural MRI: 911; fMRI: 188) and OCD (structural MRI: 928; fMRI: 247) and control subjects. Multimodal meta-analysis compared groups across voxel-based morphometry and fMRI. RESULTS: Both disorders shared reduced function and structure in the rostral and dorsomedial prefrontal cortex including the anterior cingulate. OCD patients had a disorder-specific increase in structure and function of left basal ganglia (BG) and insula relative to control subjects and ASD patients, who had reduced right BG and insula volumes versus OCD patients. In fMRI, ASD patients showed disorder-specific reduced left dorsolateral-prefrontal activation and reduced posterior cingulate deactivation, whereas OCD patients showed temporoparietal underactivation. CONCLUSIONS: The multimodal comparative meta-analysis shows shared and disorder-specific abnormalities. Whereas the rostrodorsomedial prefrontal cortex was smaller in structure and function in both disorders, this was concomitant with increased structure and function in BG and insula in OCD patients, but a reduction in ASD patients, presumably reflecting a disorder-specific frontostriatoinsular dysregulation in OCD in the form of poor frontal control over overactive BG, and a frontostriatoinsular maldevelopment in ASD with reduced structure and function in this network. Disorder-differential mechanisms appear to drive overlapping phenotypes of inhibitory control abnormalities in patients with ASD and OCD.


Subject(s)
Autism Spectrum Disorder , Basal Ganglia , Cerebral Cortex , Executive Function/physiology , Obsessive-Compulsive Disorder , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/physiopathology , Basal Ganglia/diagnostic imaging , Basal Ganglia/pathology , Basal Ganglia/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Humans , Obsessive-Compulsive Disorder/diagnostic imaging , Obsessive-Compulsive Disorder/pathology , Obsessive-Compulsive Disorder/physiopathology
18.
JAMA Psychiatry ; 73(8): 815-825, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27276220

ABSTRACT

IMPORTANCE: Patients with attention-deficit/hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD) share impaired inhibitory control. However, it is unknown whether impairments are mediated by shared or disorder-specific neurostructural and neurofunctional abnormalities. OBJECTIVE: To establish shared and disorder-specific structural, functional, and overlapping multimodal abnormalities in these 2 disorders through a voxel-based meta-analytic comparison of whole-brain gray matter volume (GMV) and functional magnetic resonance imaging (fMRI) studies of inhibition in patients with ADHD and OCD. DATA SOURCES: Literature search using PubMed, ScienceDirect, Web of Knowledge, and Scopus up to September 30, 2015. STUDY SELECTION: Whole-brain voxel-based morphometry (VBM) or fMRI studies during inhibitory control comparing children and adults with ADHD or OCD with controls. DATA EXTRACTION AND SYNTHESIS: Voxel-wise meta-analyses of GMV or fMRI differences were performed using Seed-based d-Mapping. Regional structure and function abnormalities were assessed within each patient group and then a quantitative comparison was performed of abnormalities (relative to controls) between ADHD and OCD. MAIN OUTCOMES AND MEASURES: Meta-analytic disorder-specific and shared abnormalities in GMV, in inhibitory fMRI, and in multimodal functional and structural measures. RESULTS: The search revealed 27 ADHD VBM data sets (including 931 patients with ADHD and 822 controls), 30 OCD VBM data sets (928 patients with OCD and 942 controls), 33 ADHD fMRI data sets (489 patients with ADHD and 591 controls), and 18 OCD fMRI data sets (287 patients with OCD and 284 controls). Patients with ADHD showed disorder-contrasting multimodal structural (left z = 1.904, P < .001; right z = 1.738, P < .001) and functional (left z = 1.447, P < .001; right z = 1.229, P < .001) abnormalities in bilateral basal ganglia/insula, which were decreased in GMV and function in patients with ADHD relative to those with OCD (and controls). In OCD patients, they were enhanced relative to controls. Patients with OCD showed disorder-specific reduced function and structure in rostral and dorsal anterior cingulate/medial prefrontal cortex (fMRI z = 2.113, P < .001; VBM z = 1.622, P < .001), whereas patients with ADHD showed disorder-specific underactivation predominantly in the right ventrolateral prefrontal cortex (z = 1.229, P < .001). Ventromedial prefrontal GMV reduction was shared in both disorders relative to controls. CONCLUSIONS AND RELEVANCE: Shared impairments in inhibitory control, rather than representing a transdiagnostic endophenotype in ADHD and OCD, were associated with disorder-differential functional and structural abnormalities. Patients with ADHD showed smaller and underfunctioning ventrolateral prefrontal/insular-striatal regions whereas patients with OCD showed larger and hyperfunctioning insular-striatal regions that may be poorly controlled by smaller and underfunctioning rostro/dorsal medial prefrontal regions.


Subject(s)
Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/physiopathology , Brain/abnormalities , Brain/physiopathology , Magnetic Resonance Imaging , Obsessive-Compulsive Disorder/diagnosis , Obsessive-Compulsive Disorder/physiopathology , Adult , Amygdala/abnormalities , Amygdala/physiopathology , Attention Deficit Disorder with Hyperactivity/psychology , Basal Ganglia/abnormalities , Basal Ganglia/physiopathology , Case-Control Studies , Cerebral Cortex/abnormalities , Cerebral Cortex/physiopathology , Child , Dominance, Cerebral/physiology , Female , Gyrus Cinguli/abnormalities , Gyrus Cinguli/physiopathology , Humans , Male , Neural Inhibition/physiology , Prefrontal Cortex/abnormalities , Prefrontal Cortex/physiopathology , Reference Values
19.
Dev Cogn Neurosci ; 11: 83-95, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25257972

ABSTRACT

The striatum codes motivated behavior. Delineating age-related differences within striatal circuitry can provide insights into neural mechanisms underlying ontogenic behavioral changes and vulnerabilities to mental disorders. To this end, a dual ventral/dorsal model of striatal function was examined using resting state intrinsic functional connectivity (iFC) imaging in 106 healthy individuals, ages 9-44. Broadly, the dorsal striatum (DS) is connected to prefrontal and parietal cortices and contributes to cognitive processes; the ventral striatum (VS) is connected to medial orbitofrontal and anterior cingulate cortices, and contributes to affective valuation and motivation. Findings revealed patterns of age-related changes that differed between VS and DS iFCs. We found an age-related increase in DS iFC with posterior cingulate cortex (pCC) that stabilized after the mid-twenties, but a decrease in VS iFC with anterior insula (aIns) and dorsal anterior cingulate cortex (dACC) that persisted into mid-adulthood. These distinct developmental trajectories of VS vs. DS iFC might underlie adolescents' unique behavioral patterns and vulnerabilities to psychopathology, and also speaks to changes in motivational networks that extend well past 25 years old.


Subject(s)
Aging/physiology , Corpus Striatum/physiology , Magnetic Resonance Imaging , Nerve Net/physiology , Neural Conduction , Adolescent , Adult , Brain/physiology , Cerebral Cortex/physiology , Child , Female , Gyrus Cinguli/physiology , Humans , Male , Neostriatum/physiology , Neural Conduction/physiology , Parietal Lobe/physiology , Social Behavior , Social Environment , Ventral Striatum/physiology , Young Adult
20.
Dev Cogn Neurosci ; 8: 77-85, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24280015

ABSTRACT

Loss aversion, a well-documented behavioral phenomenon, characterizes decisions under risk in adult populations. As such, loss aversion may provide a reliable measure of risky behavior. Surprisingly, little is known about loss aversion in adolescents, a group who manifests risk-taking behavior, or in anxiety disorders, which are associated with risk-avoidance. Finally, loss aversion is expected to be modulated by genotype, particularly the serotonin transporter (SERT) gene variant, based on its role in anxiety and impulsivity. This genetic modulation may also differ between anxious and healthy adolescents, given their distinct propensities for risk taking. The present work examines the modulation of loss aversion, an index of risk-taking, and reaction-time to decision, an index of impulsivity, by the serotonin-transporter-gene-linked polymorphisms (5HTTLPR) in healthy and clinically anxious adolescents. Findings show that loss aversion (1) does manifest in adolescents, (2) does not differ between healthy and clinically anxious participants, and (3), when stratified by SERT genotype, identifies a subset of anxious adolescents who are high SERT-expressers, and show excessively low loss-aversion and high impulsivity. This last finding may serve as preliminary evidence for 5HTTLPR as a risk factor for the development of comorbid disorders associated with risk-taking and impulsivity in clinically anxious adolescents.


Subject(s)
Anxiety Disorders/genetics , Anxiety Disorders/psychology , Polymorphism, Genetic/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Adolescent , Case-Control Studies , Child , Comorbidity , Female , Humans , Impulsive Behavior/genetics , Male , Reaction Time , Risk Factors , Risk-Taking
SELECTION OF CITATIONS
SEARCH DETAIL
...