Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 18(3): e0283128, 2023.
Article in English | MEDLINE | ID: mdl-36917602

ABSTRACT

Climate change will significantly impact the world's ecosystems, in part by altering species interactions and ecological processes, such as herbivory and plant community dynamics, which may impact forage quality and ecosystem production. Yet relatively few field experimental manipulations assessing all of these parameters have been performed to date. To help fill this knowledge gap, we evaluated the effects of increased temperature (+3°C day and night, year-round) and precipitation (+30% of mean annual rainfall) on slug herbivory and abundance and plant community dynamics biweekly in a pasture located in central Kentucky, U.S.A. Warming increased slug abundance once during the winter, likely due to improving conditions for foraging, whereas warming reduced slug abundance at times in late spring, mid-summer, and early fall (from 62-95% reduction depending on month). We found that warming and increased precipitation did not significantly modify slug herbivory at our site, despite altering slug abundance and affecting plant community composition and forage quality. Climate change will alter seasonal patterns of slug abundance through both direct effects on slug biology and indirect effects mediated by changes in the plant community, suggesting that pasture management practices may have to adapt.


Subject(s)
Ecosystem , Gastropoda , Animals , Grassland , Climate Change , Plants
2.
Front Microbiol ; 10: 2380, 2019.
Article in English | MEDLINE | ID: mdl-31749767

ABSTRACT

A constitutive, host-specific symbiosis exists between the aboveground fungal endophyte Epichloë coenophiala (Morgan-Jones & W. Gams) and the cool-season grass tall fescue (Lolium arundinaceum (Schreb.) Darbysh.), which is a common forage grass in the United States, Australia, New Zealand, and temperate European grasslands. New cultivars of tall fescue are continually developed to improve pasture productivity and animal health by manipulating both grass and E. coenophiala genetics, yet how these selected grass-endophyte combinations impact other microbial symbionts such as mycorrhizal and dark septate fungi remains unclear. Without better characterizing how genetically distinct grass-endophyte combinations interact with belowground microorganisms, we cannot determine how adoption of new E. coenophiala-symbiotic cultivars in pasture systems will influence long-term soil characteristics and ecosystem function. Here, we examined how E. coenophiala presence and host × endophyte genetic combinations control root colonization by belowground symbiotic fungi and associated plant nutrient concentrations and soil properties in a 2-year manipulative field experiment. We used four vegetative clone pairs of tall fescue that consisted of one endophyte-free (E-) and one E. coenophiala-symbiotic (E+) clone each, where E+ clones within each pair contained one of four endophyte genotypes: CTE14, CTE45, NTE16, or NTE19. After 2 years of growth in field plots, we measured root colonization of arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE), extraradical AMF hyphae in soil, total C, N, and P in root and shoot samples, as well as C and N in associated soils. Although we observed no effects of E. coenophiala presence or symbiotic genotype on total AMF or DSE colonization rates in roots, different grass-endophyte combinations altered AMF arbuscule presence and extraradical hyphal length in soil. The CTE45 genotype hosted the fewest AMF arbuscules regardless of endophyte presence, and E+ clones within NTE19 supported significantly greater soil extraradical hyphae compared to E- clones. Because AMF are often associated with improved soil physical characteristics and C sequestration, our results suggest that development and use of unique grass-endophyte combinations may cause divergent effects on long-term ecosystem properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...