Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters










Publication year range
1.
Comput Struct Biotechnol J ; 23: 1169-1180, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38510972

ABSTRACT

SHP2 is a tyrosine phosphatase that plays a regulatory role in multiple intracellular signaling cascades and is known to be oncogenic in certain contexts. In the absence of effectors, SHP2 adopts an autoinhibited conformation with its N-SH2 domain blocking the active site. Given the key role of N-SH2 in regulating SHP2, this domain has been extensively studied, often by X-ray crystallography. Using a combination of structural analyses and molecular dynamics (MD) simulations we show that the crystallographic environment can significantly influence the structure of the isolated N-SH2 domain, resulting in misleading interpretations. As an orthogonal method to X-ray crystallography, we use a combination of NMR spectroscopy and MD simulations to accurately determine the conformation of apo N-SH2 in solution. In contrast to earlier reports based on crystallographic data, our results indicate that apo N-SH2 in solution primarily adopts a conformation with a fully zipped central ß-sheet, and that partial unzipping of this ß-sheet is promoted by binding of either phosphopeptides or even phosphate/sulfate ions.

2.
Methods Mol Biol ; 2705: 3-23, 2023.
Article in English | MEDLINE | ID: mdl-37668966

ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique to solve the structure of biomolecular complexes at atomic resolution in solution. Small proteins such as Src-homology 2 (SH2) domains have fast tumbling rates and long-lived NMR signals, making them particularly suited to be studied by standard NMR methods. SH2 domains are modular proteins whose function is the recognition of sequences containing phosphotyrosines. In this chapter, we describe the application of NMR to assess the interaction between SH2 domains and phosphopeptides and determine the structure of the resulting complexes.


Subject(s)
Phosphopeptides , src Homology Domains , Magnetic Resonance Imaging , Phosphotyrosine , Magnetic Resonance Spectroscopy
3.
Methods Mol Biol ; 2705: 25-37, 2023.
Article in English | MEDLINE | ID: mdl-37668967

ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying the dynamics of biological macromolecules in solution. By exploiting the intricate interplay between the effects of protein motion (both overall rotational diffusion and internal mobility) and nuclear spin relaxation, NMR allows molecular motion to be probed at atomic resolution over a wide range of timescales, including picosecond (bond vibrations and methyl-group rotations), nanosecond (loop motions and rotational diffusion), and microsecond-millisecond (ligand binding, allostery). In this chapter, we describe different NMR pulse schemes (R1, R1ρ, heteronuclear NOE, and CPMG relaxation dispersion) to characterize the dynamics of SH2 domains. As an example, we use the N-SH2 domain of protein tyrosine phosphatase SHP2 in complex with two phosphopeptides derived from immune checkpoint receptor PD-1 (ITIM and ITSM).


Subject(s)
Phosphopeptides , src Homology Domains , Magnetic Resonance Imaging , Diffusion , Magnetic Resonance Spectroscopy
4.
J Mol Biol ; 435(11): 167997, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37330287

ABSTRACT

AAA+ ATPases are ubiquitous hexameric unfoldases acting in cellular protein quality control. In complex with proteases, they form protein degradation machinery (the proteasome) in both archaea and eukaryotes. Here, we use solution-state NMR spectroscopy to determine the symmetry properties of the archaeal PAN AAA+ unfoldase and gain insights into its functional mechanism. PAN consists of three folded domains: the coiled-coil (CC), OB and ATPase domains. We find that full-length PAN assembles into a hexamer with C2 symmetry, and that this symmetry extends over the CC, OB and ATPase domains. The NMR data, collected in the absence of substrate, are incompatible with the spiral staircase structure observed in electron-microscopy studies of archaeal PAN in the presence of substrate and in electron-microscopy studies of eukaryotic unfoldases both in the presence and in the absence of substrate. Based on the C2 symmetry revealed by NMR spectroscopy in solution, we propose that archaeal ATPases are flexible enzymes, which can adopt distinct conformations in different conditions. This study reaffirms the importance of studying dynamic systems in solution.


Subject(s)
Endopeptidase Clp , Methanocaldococcus , Proteasome Endopeptidase Complex , Proteolysis , Saccharomyces cerevisiae , Proteasome Endopeptidase Complex/chemistry , Endopeptidase Clp/chemistry , Protein Domains , Nuclear Magnetic Resonance, Biomolecular , Methanocaldococcus/enzymology , Saccharomyces cerevisiae/enzymology
5.
Chem Sci ; 14(21): 5743-5755, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37265738

ABSTRACT

SHP2 plays an important role in regulating cellular processes, and its pathogenic mutations cause developmental disorders and are linked to cancer. SHP2 is a multidomain protein, comprising two SH2 domains arranged in tandem, a catalytic PTP domain, and a disordered C-terminal tail. SHP2 is activated upon binding two linked phosphopeptides to its SH2 domains, and the peptide orientation and spacing between binding sites are critical for enzymatic activation. For decades, the tandem SH2 has been extensively studied to identify the relative orientation of the two SH2 domains that most effectively binds effectors. So far, neither crystallography nor experiments in solution have provided conclusive results. Using experiment-guided molecular simulations, we determine the heterogeneous structural ensemble of the tandem SH2 in solution in agreement with experimental data from small-angle X-ray scattering and NMR residual dipolar couplings. In the solution ensemble, N-SH2 adopts different orientations and positions relative to C-SH2. We suggest that the intrinsic structural plasticity of the tandem SH2 allows SHP2 to respond to external stimuli and is essential for its functional activity.

6.
Front Mol Biosci ; 10: 1148653, 2023.
Article in English | MEDLINE | ID: mdl-37065448

ABSTRACT

The discovery of several functional interactions where one or even both partners remain disordered has demonstrated that specific interactions do not necessarily require well-defined intermolecular interfaces. Here we describe a fuzzy protein-RNA complex formed by the intrinsically unfolded protein PYM and RNA. PYM is a cytosolic protein, which has been reported to bind the exon junction complex (EJC). In the process of oskar mRNA localization in Drosophila melanogaster, removal of the first intron and deposition of the EJC are essential, while PYM is required to recycle the EJC components after localization has been accomplished. Here we demonstrate that the first 160 amino acids of PYM (PYM1-160) are intrinsically disordered. PYM1-160 binds RNA independently of its nucleotide sequence, forming a fuzzy protein-RNA complex that is incompatible with PYM's function as an EJC recycling factor. We propose that the role of RNA binding consists in down-regulating PYM activity by blocking the EJC interaction surface of PYM until localization has been accomplished. We suggest that the largely unstructured character of PYM may act to enable binding to a variety of diverse interaction partners, such as multiple RNA sequences and the EJC proteins Y14 and Mago.

7.
J Magn Reson ; 350: 107431, 2023 05.
Article in English | MEDLINE | ID: mdl-37058954

ABSTRACT

Protein quality control systems are essential to maintain a healthy proteome. They often consist of an unfoldase unit, typically an AAA+ ATPase, coupled with a protease unit. In all kingdoms of life, they function to eliminate misfolded proteins, and thus prevent that their aggregates do harm to the cell, and to rapidly regulate protein levels in the presence of environmental changes. Despite the huge progress made in the past two decades in understanding the mechanism of function of protein degradation systems, the fate of the substrate during the unfolding and proteolytic processes remains poorly understood. Here we exploit an NMR-based approach to monitor GFP processing by the archaeal PAN unfoldase and the PAN-20S degradation system in real time. We find that PAN-dependent unfolding of GFP does not involve the release of partially-folded GFP molecules resulting from futile unfolding attempts. In contrast, once stably engaged with PAN, GFP molecules are efficiently transferred to the proteolytic chamber of the 20S subunit, despite the only weak affinity of PAN for the 20S subunit in the absence of substrate. This is essential to guarantee that unfolded but not proteolyzed proteins are not released into solution, where they would form toxic aggregates. The results of our studies are in good agreement with previous results derived from real-time small-angle-neutron-scattering experiments and have the advantage of allowing the investigation of substrates and products at amino-acid resolution.


Subject(s)
Molecular Chaperones
8.
Structure ; 31(2): 128-137.e5, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36610391

ABSTRACT

Non-structural protein 1 (Nsp1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major virulence factor and thus an attractive drug target. The last 33 amino acids of Nsp1 have been shown to bind within the mRNA entry tunnel of the 40S ribosomal subunit, shutting off host gene expression. Here, we report the solution-state structure of full-length Nsp1, which features an α/ß fold formed by a six-stranded, capped ß-barrel-like globular domain (N-terminal domain [NTD]), flanked by short N-terminal and long C-terminal flexible tails. The NTD has been found to be critical for 40S-mediated viral mRNA recognition and promotion of viral gene expression. We find that in free Nsp1, the NTD mRNA-binding surface is occluded by interactions with the acidic C-terminal tail, suggesting a mechanism of activity regulation based on the interplay between the folded NTD and the disordered C-terminal region. These results are relevant for drug-design efforts targeting Nsp1.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Protein Binding , RNA, Messenger/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/chemistry
9.
J Magn Reson ; 343: 107296, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36088744
10.
J Struct Biol X ; 6: 100072, 2022.
Article in English | MEDLINE | ID: mdl-36090770

ABSTRACT

Solid-state NMR (ssNMR) has become a well-established technique to study large and insoluble protein assemblies. However, its application to nucleic acid-protein complexes has remained scarce, mainly due to the challenges presented by overlapping nucleic acid signals. In the past decade, several efforts have led to the first structure determination of an RNA molecule by ssNMR. With the establishment of these tools, it has become possible to address the problem of structure determination of nucleic acid-protein complexes by ssNMR. Here we review first and more recent ssNMR methodologies that study nucleic acid-protein interfaces by means of chemical shift and peak intensity perturbations, direct distance measurements and paramagnetic effects. At the end, we review the first structure of an RNA-protein complex that has been determined from ssNMR-derived intermolecular restraints.

11.
Sci Rep ; 11(1): 17561, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34475498

ABSTRACT

Box C/D ribonucleoprotein complexes are RNA-guided methyltransferases that methylate the ribose 2'-OH of RNA. The central 'guide RNA' has box C and D motifs at its ends, which are crucial for activity. Archaeal guide RNAs have a second box C'/D' motif pair that is also essential for function. This second motif is poorly conserved in eukaryotes and its function is uncertain. Conflicting literature data report that eukaryotic box C'/D' motifs do or do not bind proteins specialized to recognize box C/D-motifs and are or are not important for function. Despite this uncertainty, the architecture of eukaryotic 2'-O-methylation enzymes is thought to be similar to that of their archaeal counterpart. Here, we use biochemistry, X-ray crystallography and mutant analysis to demonstrate the absence of functional box C'/D' motifs in more than 80% of yeast guide RNAs. We conclude that eukaryotic Box C/D RNPs have two non-symmetric protein assembly sites and that their three-dimensional architecture differs from that of archaeal 2'-O-methylation enzymes.


Subject(s)
Archaea/genetics , Eukaryota/genetics , Methyltransferases/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Small Nucleolar/metabolism , RNA/genetics , Ribonucleoproteins/metabolism , Methylation
12.
Angew Chem Int Ed Engl ; 60(44): 23903-23910, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34379871

ABSTRACT

Knowledge of RNA structure, either in isolation or in complex, is fundamental to understand the mechanism of cellular processes. Solid-state NMR (ssNMR) is applicable to high molecular-weight complexes and does not require crystallization; thus, it is well-suited to study RNA as part of large multicomponent assemblies. Recently, we solved the first structures of both RNA and an RNA-protein complex by ssNMR using conventional 13 C- and 15 N-detection. This approach is limited by the severe overlap of the RNA peaks together with the low sensitivity of multidimensional experiments. Here, we overcome the limitations in sensitivity and resolution by using 1 H-detection at fast MAS rates. We develop experiments that allow the identification of complete nucleobase spin-systems together with their site-specific base pair pattern using sub-milligram quantities of one uniformly labelled RNA sample. These experiments provide rapid access to RNA secondary structure by ssNMR in protein-RNA complexes of any size.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , RNA/analysis , Base Pairing , Proton Magnetic Resonance Spectroscopy
13.
PLoS Pathog ; 17(6): e1009635, 2021 06.
Article in English | MEDLINE | ID: mdl-34143834

ABSTRACT

Kaposi Sarcoma-associated herpesvirus (KSHV) causes three human malignancies, Kaposi Sarcoma (KS), Primary Effusion Lymphoma (PEL) and the plasma cell variant of multicentric Castleman's Disease (MCD), as well as an inflammatory cytokine syndrome (KICS). Its non-structural membrane protein, pK15, is among a limited set of viral proteins expressed in KSHV-infected KS tumor cells. Following its phosphorylation by Src family tyrosine kinases, pK15 recruits phospholipase C gamma 1 (PLCγ1) to activate downstream signaling cascades such as the MEK/ERK, NFkB and PI3K pathway, and thereby contributes to the increased proliferation and migration as well as the spindle cell morphology of KSHV-infected endothelial cells. Here, we show that a phosphorylated Y481EEVL motif in pK15 preferentially binds into the PLCγ1 C-terminal SH2 domain (cSH2), which is involved in conformational changes occurring during the activation of PLCγ1 by receptor tyrosine kinases. We determined the crystal structure of a pK15 12mer peptide containing the phosphorylated pK15 Y481EEVL motif in complex with a shortened PLCγ1 tandem SH2 (tSH2) domain. This structure demonstrates that the pK15 peptide binds to the PLCγ1 cSH2 domain in a position that is normally occupied by the linker region connecting the PLCγ1 cSH2 and SH3 domains. We also show that longer pK15 peptides containing the phosphorylated pK15 Y481EEVL motif can increase the Src-mediated phosphorylation of the PLCγ1 tSH2 region in vitro. This pK15-induced increase in Src-mediated phosphorylation of PLCγ1 can be inhibited with the small pK15-derived peptide which occupies the PLCγ1 cSH2 domain. Our findings thus suggest that pK15 may act as a scaffold protein to promote PLCγ1 activation in a manner similar to the cellular scaffold protein SLP-76, which has been shown to promote PLCγ1 activation in the context of T-cell receptor signaling. Reminiscent of its positional homologue in Epstein-Barr Virus, LMP2A, pK15 may therefore mimic aspects of antigen-receptor signaling. Our findings also suggest that it may be possible to inhibit the recruitment and activation of PLCγ1 pharmacologically.


Subject(s)
Herpesviridae Infections/metabolism , Phospholipase C gamma/metabolism , Viral Nonstructural Proteins/metabolism , src-Family Kinases/metabolism , HEK293 Cells , Herpesvirus 8, Human/physiology , Humans , Phosphorylation , Virus Activation/physiology , Virus Latency/physiology , Virus Replication/physiology
14.
Comput Struct Biotechnol J ; 19: 2398-2415, 2021.
Article in English | MEDLINE | ID: mdl-34025932

ABSTRACT

SHP2 is a ubiquitous protein tyrosine phosphatase, whose activity is regulated by phosphotyrosine (pY)-containing peptides generated in response to extracellular stimuli. Its crystal structure reveals a closed, auto-inhibited conformation in which the N-terminal Src homology 2 (N-SH2) domain occludes the catalytic site of the phosphatase (PTP) domain. High-affinity mono-phosphorylated peptides promote catalytic activity by binding to N-SH2 and disrupting the interaction with the PTP. The mechanism behind this process is not entirely clear, especially because N-SH2 is incapable of accommodating complete peptide binding when SHP2 is in the auto-inhibited state. Here, we show that pY performs an essential role in this process; in addition to its contribution to overall peptide-binding energy, pY-recognition leads to enhanced dynamics of the N-SH2 EF and BG loops via an allosteric communication network, which destabilizes the N-SH2-PTP interaction surface and simultaneously generates a fully accessible binding pocket for the C-terminal half of the phosphopeptide. Subsequently, full binding of the phosphopeptide is associated with the stabilization of activated SHP2. We demonstrate that this allosteric network exists only in N-SH2, which is directly involved in the regulation of SHP2 activity, while the C-terminal SH2 domain (C-SH2) functions primarily to recruit high-affinity bidentate phosphopeptides.

15.
Front Mol Biosci ; 8: 653148, 2021.
Article in English | MEDLINE | ID: mdl-34041264

ABSTRACT

The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium's collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.

16.
Biomol NMR Assign ; 15(2): 287-295, 2021 10.
Article in English | MEDLINE | ID: mdl-33770349

ABSTRACT

The current COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has become a worldwide health crisis, necessitating coordinated scientific research and urgent identification of new drug targets for treatment of COVID-19 lung disease. The covid19-nmr consortium seeks to support drug development by providing publicly accessible NMR data on the viral RNA elements and proteins. The SARS-CoV-2 genome comprises a single RNA of about 30 kb in length, in which 14 open reading frames (ORFs) have been annotated, and encodes approximately 30 proteins. The first two-thirds of the SARS-CoV-2 genome is made up of two large overlapping open-reading-frames (ORF1a and ORF1b) encoding a replicase polyprotein, which is subsequently cleaved to yield 16 so-called non-structural proteins. The non-structural protein 1 (Nsp1), which is considered to be a major virulence factor, suppresses host immune functions by associating with host ribosomal complexes at the very end of its C-terminus. Furthermore, Nsp1 facilitates initiation of viral RNA translation via an interaction of its N-terminal domain with the 5' untranslated region (UTR) of the viral RNA. Here, we report the near-complete backbone chemical-shift assignments of full-length SARS-CoV-2 Nsp1 (19.8 kDa), which reveal the domain organization, secondary structure and backbone dynamics of Nsp1, and which will be of value to further NMR-based investigations of both the biochemical and physiological functions of Nsp1.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Models, Molecular , Protein Domains
17.
RNA ; 27(4): 496-512, 2021 04.
Article in English | MEDLINE | ID: mdl-33483369

ABSTRACT

Ribosomal RNA (rRNA) carries extensive 2'-O-methyl marks at functionally important sites. This simple chemical modification is thought to confer stability, promote RNA folding, and contribute to generate a heterogenous ribosome population with a yet-uncharacterized function. 2'-O-methylation occurs both in archaea and eukaryotes and is accomplished by the Box C/D RNP enzyme in an RNA-guided manner. Extensive and partially conflicting structural information exists for the archaeal enzyme, while no structural data is available for the eukaryotic enzyme. The yeast Box C/D RNP consists of a guide RNA, the RNA-primary binding protein Snu13, the two scaffold proteins Nop56 and Nop58, and the enzymatic module Nop1. Here we present the high-resolution structure of the eukaryotic Box C/D methyltransferase Nop1 from Saccharomyces cerevisiae bound to the amino-terminal domain of Nop56. We discuss similarities and differences between the interaction modes of the two proteins in archaea and eukaryotes and demonstrate that eukaryotic Nop56 recruits the methyltransferase to the Box C/D RNP through a protein-protein interface that differs substantially from the archaeal orthologs. This study represents a first achievement in understanding the evolution of the structure and function of these proteins from archaea to eukaryotes.


Subject(s)
Archaeal Proteins/chemistry , Chromosomal Proteins, Non-Histone/chemistry , Nuclear Proteins/chemistry , Pyrococcus furiosus/genetics , Ribonucleoproteins, Small Nucleolar/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Binding Sites , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Crystallography, X-Ray , Gene Expression , Methylation , Models, Molecular , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pyrococcus furiosus/metabolism , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribonucleoproteins, Small Nuclear/chemistry , Ribonucleoproteins, Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/metabolism , Ribonucleoproteins, Small Nucleolar/genetics , Ribonucleoproteins, Small Nucleolar/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Structural Homology, Protein
19.
J Struct Biol X ; 4: 100026, 2020.
Article in English | MEDLINE | ID: mdl-32647828

ABSTRACT

Phosphotyrosine (pY) signaling is instrumental to numerous cellular processes. pY recognition occurs through specialized protein modules, among which the Src-homology 2 (SH2) domain is the most common. SH2 domains are small protein modules with an invariant fold, and are present in more than a hundred proteins with different function. Here we ask the question of how such a structurally conserved, small protein domain can recognize distinct phosphopeptides with the breath of binding affinity, specificity and kinetic parameters necessary for proper control of pY-dependent signaling and rapid cellular response. We review the current knowledge on structure, thermodynamics and kinetics of SH2-phosphopeptide complexes and conclude that selective phosphopeptide recognition is governed by both structure and dynamics of the SH2 domain, as well as by the kinetics of the binding events. Further studies on the thermodynamic and kinetic properties of SH2-phosphopeptide complexes, beyond their structure, are required to understand signaling regulation.

20.
Biophys J ; 119(2): 375-388, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32640186

ABSTRACT

The proteasome is a key player of regulated protein degradation in all kingdoms of life. Although recent atomic structures have provided snapshots on a number of conformations, data on substrate states and populations during the active degradation process in solution remain scarce. Here, we use time-resolved small-angle neutron scattering of a deuterium-labeled GFPssrA substrate and an unlabeled archaeal PAN-20S system to obtain direct structural information on substrate states during ATP-driven unfolding and subsequent proteolysis in solution. We find that native GFPssrA structures are degraded in a biexponential process, which correlates strongly with ATP hydrolysis, the loss of fluorescence, and the buildup of small oligopeptide products. Our solution structural data support a model in which the substrate is directly translocated from PAN into the 20S proteolytic chamber, after a first, to our knowledge, successful unfolding process that represents a point of no return and thus prevents dissociation of the complex and the release of harmful, aggregation-prone products.


Subject(s)
Adenosine Triphosphatases , Proteasome Endopeptidase Complex , Adenosine Triphosphatases/metabolism , Neutrons , Proteasome Endopeptidase Complex/metabolism , Protein Transport , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...