Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Article in English | MEDLINE | ID: mdl-35107413

ABSTRACT

Plasticisers are commonly used to increase the flexibility of a wide variety of food contact materials including the plastic tubing, liners, and gaskets used in the dairy industry. In recent years, some classes of plasticisers have come under scrutiny due to the potential for transfer of these compounds into the milk itself, which can then be further processed into foods such as powdered milks and cheeses, infant formula, and baked goods. One such set of plasticisers that is being evaluated for frequency of use, potential routes of exposure, and risk to consumers is ortho-phthalates, hereafter referred to as phthalates. In order to better understand the actual use of phthalate versus non-phthalate plasticised tubing, a robust, rapid, and portable analytical method is necessary for on-site screening. Laboratory Raman and near-infrared spectrometers have been used extensively for polymer and additive evaluation, and advances in portable/hand-held technology could lead to feasible plasticiser evaluation in the field. This research overviews efforts to evaluate six portable spectroscopy devices for their ability to identify phthalate versus non-phthalate plasticised polyvinyl chloride (PVC) dairy tubing, liners, and gaskets. The most successful method, a hand-held Raman spectrometer along with a plasticiser spectral library or a chemometric model, can rapidly and accurately identify phthalate containing PVC and has the potential to be employed as a future field screening technique for regulators and the dairy industry.


Subject(s)
Phthalic Acids , Plasticizers , Humans , Plastics , Polyvinyl Chloride/chemistry , Spectrum Analysis
3.
Anal Bioanal Chem ; 414(3): 1189-1199, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34435208

ABSTRACT

Additional occurrence data are needed to better understand human exposure to per- and poly-fluoroalkyl substances (PFAS) from commercially available foods in the United States. The Food and Drug Administration's (FDA) Total Diet Study (TDS) collects foods that are both nationally and regionally distributed. In 2018, 172 processed foods were collected from grocery stores around Lenexa, KS, as part of the TDS national collection. A previously developed method for the analysis of PFAS in foods as part of the TDS regional collection was modified and optimized for these samples. This method was single lab validated using 5 different matrices and method detection limits were calculated. During the analysis of these samples, challenges arose with method blanks and further investigation into statistical methods to distinguish between blank and sample concentrations were done. The confirmation of two short chain PFAS, perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPeA), was not possible using triple quadrupole mass spectrometry and a confirmation method was developed using high-resolution mass spectrometry. This technique was also used to investigate potential detections and interferents that fell within the retention time criteria for positive detections. In the national collection, positive detections of perfluorooctanesulfonic acid (PFOS) and perfluorononanoic acid (PFNA) were found in frozen fish sticks/patties, PFOS and perfluorodecanoic acid (PFDA) in canned tuna, and PFOS in protein powder. Concentrations were all below 150 ppt, and no other detects were confirmed above the method detection limits in any other foods.


Subject(s)
Alkanesulfonic Acids/analysis , Decanoic Acids/analysis , Fatty Acids/analysis , Fluorocarbons/analysis , Food Contamination/analysis , Animals , Diet , Environmental Pollutants/analysis , Fishes , Humans , Seafood/analysis , United States , United States Food and Drug Administration
4.
Article in English | MEDLINE | ID: mdl-33493086

ABSTRACT

Phthalates are one of many chemical compounds that are used as plasticisers. Packaging can transfer plasticisers to the surfaces of foods or other materials. A recent study suggested a link between fast food consumption and increased urine phthalate metabolites even though phthalates are most commonly found in food contact materials made of PVC while fast food packaging is most commonly composed of paper and paper board. Phthalates in PVC are usually present in percent concentrations. In non-PVC food contact materials, such as paper or paperboard, the concentrations, if any, are expected to be significantly lower which can greatly impact the analytical method used for their determination. Due to the widespread use of plasticised PVC in many commercial applications, background concentrations of phthalates are a concern for trace concentration analyses and background contamination must be avoided when performing these analyses. A glassware cleaning method was developed and a solvent extraction with dichloromethane and hexane was used to extract phthalates from paper-based food packaging. The extracts were then analysed using a GC-MS/MS. The minimum reporting concentrations for the method were determined to be 0.10-0.40 µg/g depending on the phthalate investigated. Phthalate concentrations in several different non-PVC printed and unprinted packaging are presented. Of the 54 packaging samples tested, 10 samples contained no reportable concentrations of any of the 6 phthalates investigated. Of those that were reportable, all measured lower than 10 µg/g and in fact, most had concentrations less than 1 µg/g. These data demonstrate that phthalates from fast food packaging do not significantly contribute to overall consumer exposure.


Subject(s)
Food Contamination/analysis , Phthalic Acids/analysis , Plasticizers/analysis , Fast Foods , Food Packaging , Gas Chromatography-Mass Spectrometry , Hexanes/chemistry , Humans , Methylene Chloride/chemistry , Paper , Solid Phase Extraction , United States
5.
Article in English | MEDLINE | ID: mdl-32160133

ABSTRACT

In the US, sulphites must be declared on the label if they are present in concentrations greater than 10 mg/kg (determined as) SO2 because an allergic-like response has been reported in a small subset of the population upon consumption of sulphite-containing products. The most widely used method for sulphite determination, the optimised Monier-Williams (OMW), produces false positive results with vegetables from the Allium (garlic) and Brassica (cabbage) genera due to extraction conditions that are thought to cause endogenous sulphur compounds to release SO2. Recently, an LC-MS/MS method was developed for sulphites but has only been tested with samples that are 100% Allium or Brassica. Since regulatory samples may contain these vegetables as ingredients, additional investigations were necessary to determine the potential extent of false positives. Four blank matrices, chips, phyllo shells, hummus, and quinoa were spiked with various concentrations of onion and garlic powders. The sulphite concentrations were determined using an LC-MS/MS method. The matrix is extracted with a buffered formaldehyde solution, converting free and reversibly bound sulphite to the stable formaldehyde adduct, hydroxymethylsulfonate (HMS). It was determined that even at concentrations up to 8% garlic powder or 2% onion powder, the measured sulphite concentration was below the 10 mg/kg SO2 labelling threshold. Commercial dried garlic powders were evaluated to determine the variation in responses that might be encountered in future regulatory samples. Recovery studies were conducted to determine if these methods would detect added sulphite. The ability to eliminate false positives due to these ingredients will result in a greater reliability in the accurate determination of added sulphite to ensure compliance with labelling requirements.


Subject(s)
Food Analysis , Food Contamination/analysis , Garlic/chemistry , Onions/chemistry , Sulfites/analysis , Chromatography, Liquid , Tandem Mass Spectrometry
6.
Food Chem ; 286: 537-540, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-30827644

ABSTRACT

Sulfites are food additives found in a large variety of food products to help reduce oxidation and browning. A small subset of the population has "allergic-like" symptoms upon consumption of sulfite containing foods. There are several sulfite detection methods available in the literature that vary in analysis time and required instrumentation. There are also rapid screening tests available that have not been tested extensively for accuracy and precision. In this study, four different methods (an LC-MS/MS method, a spectrophotometric method, a test strip method and a spot test method) were used to determine the sulfite concentration of 10 different commercially sulfited products. Of these methods, the LC-MS/MS and the spectrophotometric method had the most comparable results. The test strips were only accurate at concentrations greater than 50 mg/kg (ppm) SO2. The spot test method was found to be inaccurate with both standard solutions and samples.


Subject(s)
Beverages/analysis , Chromatography, Liquid/methods , Food Additives/analysis , Tandem Mass Spectrometry/methods , Sulfites/analysis
7.
Article in English | MEDLINE | ID: mdl-29510083

ABSTRACT

PVC is a common food contact material that is usually plasticised to increase its flexibility. Phthalates are one class of chemical compounds that are often used as plasticisers in PVC in a wide range of industries. They may be used in packaging materials for foods and can also be found in components of certain food processing equipment such as conveyor belts and tubing. Transfer of plasticisers from packaging to foods can occur. In recent years, there has been increased interest in understanding the health effects of phthalates, as well as the possible human exposure levels. However, there is limited information available about the routes of exposure to phthalates. In July 2014, the Chronic Hazard Advisory Panel (CHAP) produced a report for the U.S. Consumer Product Safety Commission detailing the potential health hazards of phthalates and phthalate alternatives. This report listed diet as one factor contributing greater than or equal to 10% of total phthalate exposure. As a result of this report, the U.S. Food and Drug Administration (FDA) is interested in determining the types of the primary plasticiser present in food packaging and processing materials as well as their concentrations. An investigation was conducted of 56 different samples of PVC food packaging and food processing materials available in the US market using a solvent extraction and GC-MS analysis. Nine different plasticisers including three phthalates, di(2-ethylhexyl) phthalate, diisononyl phthalate and diisodecyl phthalate, were identified in the products tested. The plasticiser concentrations ranged from 1 to 53% depending on the types of food contact materials and the type of plasticiser. Overall, it appears that manufacturers are switching away from phthalates as their primary plasticiser to alternate compounds such as ESBO, ATBC, DEHT, DINCH, DEHA and DINA.


Subject(s)
Food Contamination/analysis , Food Handling , Food Packaging , Plasticizers/analysis , Polyvinyl Chloride/chemistry , Gas Chromatography-Mass Spectrometry , United States , United States Food and Drug Administration
8.
J AOAC Int ; 100(6): 1785-1794, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29137699

ABSTRACT

Sulfites are added to a wide range of food and beverage products to prevent browning or oxidation. Although most of the population do not experience side effects from consuming sulfites, a small subset has been shown to experience an "allergic-like" response. For this reason, the U.S. Food and Drug Administration requires that sulfites be labeled on all products that contain more than 10 mg/kg (parts per million) sulfur dioxide. The current regulatory method, optimized Monier-Williams (OMW) Official Method 990.28, has been successful in quantifying sulfites in most matrixes, but is time-consuming and has a method detection limit at the regulatory-labeling threshold. Recently, an LC-tandem MS (MS/MS) method was published that was applicable to a wide range of sulfite-containing matrixes. This method converts free and reversibly bound sulfite to the formaldehyde adduct hydroxymethylsulfonate, which could then be separated from matrix constituents using a hydrophilic interaction LC analytical column and subsequently be detected with tandem MS (MS/MS). In this study, multilaboratory validation was conducted with 11 laboratories in the United States and Canada. Four matrixes were spiked at varying concentrations and three additional commercially sulfited matrixes were included. An abbreviated comparison study between the LC-MS/MS and OMW methods was conducted for select samples. Average recoveries for all matrixes ranged from 86 to 114% with RSDr and RSDR values of 4.5-17.5 and 8.6-22.5%, respectively. Further comparisons will be necessary to draw comparisons between the two methods. This method proved to be a faster and more sensitive way to determine sulfites in food and beverages, showing promise for the continuing improvement of enforcement of sulfite labeling requirements to protect individuals who have sulfite sensitivity.


Subject(s)
Chromatography, Liquid/methods , Food Analysis/methods , Sulfites/analysis , Tandem Mass Spectrometry/methods , Canada , Chromatography, Liquid/instrumentation , Fruit/chemistry , Reproducibility of Results , Tandem Mass Spectrometry/instrumentation , United States , Vegetables/chemistry
9.
Article in English | MEDLINE | ID: mdl-27592824

ABSTRACT

Sulphites are a family of additives regulated for use worldwide in food products. They must be declared on the label if they are present in concentrations greater than 10 mg kg-1, determined as sulphur dioxide (SO2). The current US regulatory method for sulphites, the optimised Monier-Williams method (OMW), produces false-positive results with vegetables from the Allium (garlic) and Brassica (cabbage) genera due to extraction conditions that are thought to cause endogenous sulphur compounds to release SO2. Recently, modifications to the OMW method (2x MW) were published that reportedly reduced this false-positive in garlic. However, no other vegetables from these genera have been investigated. In addition, an LC-MS/MS method was developed for sulphite analysis, but it has not yet been tested with these problematic matrices. Ten vegetable species were analysed using these sulphite methods (OMW titration, OMW gravimetric, 2x MW and LC-MS/MS) to determine the false-positive rate. Sulphite concentrations > 10 mg kg-1 SO2 were observed with the OMW analyses. The 2x MW method reduced the measured concentration in unsulphited samples to ≤ 10 mg kg-1 SO2 for all matrices analysed. The LC-MS/MS method showed concentrations < 10 mg kg-1 for the Brassica samples, but only displayed a slight reduction in the Allium matrices. Spiked recovery studies were conducted to determine if these methods can detect added sulphite. The 2x MW had recoveries of 17% and 42% for water and fresh garlic, respectively, and the LC-MS/MS had recoveries of 108%, 125%, 116% and 107% for water, fresh garlic, roasted garlic, and hummus, respectively. The low recoveries of the 2x MW may indicate that sulphur compounds cannot be properly quantified with this method. The ability to eliminate false-positives will enable accurate determination of added sulphite to ensure compliance with sulphite labelling requirements.


Subject(s)
Allium/chemistry , Brassica/chemistry , Sulfites/analysis , Vegetables/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...