Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-170324

ABSTRACT

As part of any plan to lift or ease the confinement restrictions that are in place in many different countries, there is an urgent need to increase the capacity of laboratory testing for SARS CoV-2. Detection of the viral genome through RT-qPCR is the golden standard for this test, however, the high demand of the materials and reagents needed to sample individuals, purify the viral RNA, and perform the RT-qPCR test has resulted in a worldwide shortage of several of these supplies. Here, we show that directly lysed saliva samples can serve as a suitable source for viral RNA detection that is cheaper and can be as efficient as the classical protocol that involves column purification of the viral RNA. In addition, it surpasses the need for swab sampling, decreases the risk of the healthcare personnel involved in this process, and accelerates the diagnostic procedure.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-120402

ABSTRACT

The COVID-19 pandemic has affected most countries in the world. Studying the evolution and transmission patterns in different countries is crucial to implement effective strategies for disease control and prevention. In this work, we present the full genome sequence for 17 SARS-CoV-2 isolates corresponding to the earliest sampled cases in Mexico. Global and local phylogenomics, coupled with mutational analysis, consistently revealed that these viral sequences are distributed within 2 known lineages, the SARS-CoV-2 lineage A/G, containing mostly sequences from North America, and the lineage B/S containing mainly sequences from Europe. Based on the exposure history of the cases and on the phylogenomic analysis, we characterized fourteen independent introduction events. Additionally, three cases with no travel history were identified. We found evidence that two of these cases represent local transmission cases occurring in Mexico during mid-March 2020, denoting the earliest events described in the country. Within this Mexican cluster, we also identified an H49Y amino acid change in the spike protein. This mutation is a homoplasy occurring independently through time and space, and may function as a molecular marker to follow on any further spread of these viral variants throughout the country. Our results depict the general picture of the SARS-CoV-2 variants introduced at the beginning of the outbreak in Mexico, setting the foundation for future surveillance efforts. This work is the result of the collaboration of five institutions into one research consortium: three public health institutes and two universities. From the beginning of this work, it was agreed that the experimental leader of each institution would share the first authorship. Those were the criteria followed to assign first co-first authorship in this manuscript. The order of the other authors was randomly assigned. IMPORTANCEUnderstanding the introduction, spread and establishment of SARS-CoV-2 within distinct human populations is crucial to implement effective control strategies as well as the evolution of the pandemics. In this work, we describe that the initial virus strains introduced in Mexico came from Europe and the United States and the virus was circulating locally in the country as early as mid-March. We also found evidence for early local transmission of strains having the mutation H49Y in the Spike protein, that could be further used as a molecular marker to follow viral spread within the country and the region.

SELECTION OF CITATIONS
SEARCH DETAIL