Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 861
Filter
1.
PLoS One ; 19(7): e0302563, 2024.
Article in English | MEDLINE | ID: mdl-38985774

ABSTRACT

Research on personal adornments depends on the reliable characterisation of materials to trace provenance and model complex social networks. However, many analytical techniques require the transfer of materials from the museum to the laboratory, involving high insurance costs and limiting the number of items that can be analysed, making the process of empirical data collection a complicated, expensive and time-consuming routine. In this study, we compiled the largest geochemical dataset of Iberian personal adornments (n = 1243 samples) by coupling X-ray fluorescence compositional data with their respective X-ray diffraction mineral labels. This allowed us to develop a machine learning-based framework for the prediction of bead-forming minerals by training and benchmarking 13 of the most widely used supervised algorithms. As a proof of concept, we developed a multiclass model and evaluated its performance on two assemblages from different Portuguese sites with current mineralogical characterisation: Cova das Lapas (n = 15 samples) and Gruta da Marmota (n = 10 samples). Our results showed that decisión-tres based classifiers outperformed other classification logics given the discriminative importance of some chemical elements in determining the mineral phase, which fits particularly well with the decision-making process of this type of model. The comparison of results between the different validation sets and the proof-of-concept has highlighted the risk of using synthetic data to handle imbalance and the main limitation of the framework: its restrictive class system. We conclude that the presented approach can successfully assist in the mineral classification workflow when specific analyses are not available, saving time and allowing a transparent and straightforward assessment of model predictions. Furthermore, we propose a workflow for the interpretation of predictions using the model outputs as compound responses enabling an uncertainty reduction approach currently used by our team. The Python-based framework is packaged in a public repository and includes all the necessary resources for its reusability without the need for any installation.


Subject(s)
Minerals , Minerals/analysis , Minerals/chemistry , Algorithms , Portugal , X-Ray Diffraction , Spectrometry, X-Ray Emission/methods , Humans , Machine Learning , Supervised Machine Learning
3.
Immunity ; 57(7): 1586-1602.e10, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38897202

ABSTRACT

The tissues are the site of many important immunological reactions, yet how the immune system is controlled at these sites remains opaque. Recent studies have identified Foxp3+ regulatory T (Treg) cells in non-lymphoid tissues with unique characteristics compared with lymphoid Treg cells. However, tissue Treg cells have not been considered holistically across tissues. Here, we performed a systematic analysis of the Treg cell population residing in non-lymphoid organs throughout the body, revealing shared phenotypes, transient residency, and common molecular dependencies. Tissue Treg cells from different non-lymphoid organs shared T cell receptor (TCR) sequences, with functional capacity to drive multi-tissue Treg cell entry and were tissue-agnostic on tissue homing. Together, these results demonstrate that the tissue-resident Treg cell pool in most non-lymphoid organs, other than the gut, is largely constituted by broadly self-reactive Treg cells, characterized by transient multi-tissue migration. This work suggests common regulatory mechanisms may allow pan-tissue Treg cells to safeguard homeostasis across the body.


Subject(s)
Cell Movement , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Animals , Mice , Cell Movement/immunology , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Forkhead Transcription Factors/metabolism , Organ Specificity/immunology , Homeostasis/immunology
4.
Glob Chang Biol ; 30(6): e17375, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895806

ABSTRACT

Islands are biodiversity hotspots that host unique assemblages. However, a substantial proportion of island species are threatened and their long-term survival is uncertain. Identifying and preserving vulnerable species has become a priority, but it is also essential to combine this information with other facets of biodiversity like functional diversity, to understand how future extinctions might affect ecosystem stability and functioning. Focusing on mammals, we (i) assessed how much functional space would be lost if threatened species go extinct, (ii) determined the minimum number of extinctions that would cause a significant functional loss, (iii) identified the characteristics (e.g., biotic, climatic, geographic, or orographic) of the islands most vulnerable to future changes in the functional space, and (iv) quantified how much of that potential functional loss would be offset by introduced species. Using trait information for 1474 mammal species occurring in 318 islands worldwide, we built trait probability density functions to quantify changes in functional richness and functional redundancy in each island if the mammals categorized by IUCN as threatened disappeared. We found that the extinction of threatened mammals would reduce the functional space in 63% of the assessed islands, although these extinctions in general would cause a reduction of less than 15% of their overall functional space. Also, on most islands, the extinction of just a few species would be sufficient to cause a significant loss of functional diversity. The potential functional loss would be higher on small, isolated, and/or species-rich islands, and, in general, the functional space lost would not be offset by introduced species. Our results show that the preservation of native species and their ecological roles remains crucial for maintaining the current functioning of island ecosystems. Therefore, conservation measures considering functional diversity are imperative to safeguard the unique functional roles of threatened mammal species on islands.


Subject(s)
Biodiversity , Conservation of Natural Resources , Endangered Species , Extinction, Biological , Islands , Mammals , Animals , Mammals/physiology , Introduced Species
6.
Matrix Biol ; 130: 36-46, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723870

ABSTRACT

Cellular Communication Network Factor 2, CCN2, is a profibrotic cytokine implicated in physiological and pathological processes in mammals. The expression of CCN2 is markedly increased in dystrophic muscles. Interestingly, diminishing CCN2 genetically or inhibiting its function improves the phenotypes of chronic muscular fibrosis in rodent models. Elucidating the cell-specific mechanisms behind the induction of CCN2 is a fundamental step in understanding its relevance in muscular dystrophies. Here, we show that the small lipids LPA and 2S-OMPT induce CCN2 expression in fibro/adipogenic progenitors (FAPs) through the activation of the LPA1 receptor and, to a lower extent, by also the LPA6 receptor. These cells show a stronger induction than myoblasts or myotubes. We show that the LPA/LPARs axis requires ROCK kinase activity and organized actin cytoskeleton upstream of YAP/TAZ signaling effectors to upregulate CCN2 levels, suggesting that mechanical signals are part of the mechanism behind this process. In conclusion, we explored the role of the LPA/LPAR axis on CCN2 expression, showing a strong cytoskeletal-dependent response in muscular FAPs.


Subject(s)
Adipogenesis , Connective Tissue Growth Factor , Lysophospholipids , Animals , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Mice , Lysophospholipids/metabolism , Cell Communication , Signal Transduction , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/genetics , Stem Cells/metabolism , Stem Cells/cytology , Gene Expression Regulation , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Cell Differentiation , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Humans , Actin Cytoskeleton/metabolism
8.
Front Plant Sci ; 15: 1375371, 2024.
Article in English | MEDLINE | ID: mdl-38654904

ABSTRACT

Differences within species (Intraspecific trait variation - ITV) contribute substantially to overall trait variability and environmental harshness can reduce among-species variation. While aboveground traits have received considerable attention, knowledge about ITV in fine-root traits and how it differs from ITV in aboveground traits remains limited. This study examined the partitioning of trait variation aboveground and fine-root traits in 52 European herbaceous species and how such proportions change in response to drought, offering valuable insights for accurate functional species characterization and inter-species comparisons. We studied seven morphological aboveground and fine-root traits under drought and well-watered conditions in a greenhouse experiment. Linear mixed effect models and permutational multivariate analysis of variance (PERMANOVA) were employed to decompose trait variation, ensuring the robustness of our results. We also calculated variance partitioning for the combination of aboveground traits and the combination of fine-root traits, as well as pairs of analogous leaf and fine-root traits (i.e., traits that fulfill similar functions) for each treatment (control and drought). Among-species trait differences explained a greater proportion of overall variance than within-species variation, except for root dry matter content (RDMC). Height and leaf area stood out, with species' identity accounting for 87-90% of total trait variation. Drought had no significant effect on the proportions of variation in any of the traits. However, the combination of fine-root traits exhibited higher intraspecific variability (44-44%) than aboveground traits (19-21%) under both drought and control. Analogous root traits also showed higher ITV (51-50%) than analogous leaf traits (27-31%). Our findings highlight substantial within-species variation and the nuanced responses of fine-root traits, particularly RDMC, suggesting root traits' flexibility to soil heterogeneity that fosters less differentiation among species. Among-species trait differences, especially aboveground, may underscore distinct strategies and competitive abilities for resource acquisition and utilization. This study contributes to elucidate the mechanisms underlying the multifunctionality of the above- and belowground plants compartments.

9.
Nat Commun ; 15(1): 2895, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570481

ABSTRACT

Theory suggests that intraspecific trait variability may promote species coexistence when competitively inferior species have higher intraspecific trait variability than their superior competitors. Here, we provide empirical evidence for this phenomenon in tree seedlings. We evaluated intraspecific variability and plastic response of ten traits in 6750 seedlings of ten species in a three-year greenhouse experiment. While we observed no relationship between intraspecific trait variability and species competitiveness in competition-free homogeneous environments, an inverse relationship emerged under interspecific competition and in spatially heterogeneous environments. We showed that this relationship is driven by the plastic response of the competitively inferior species: Compared to their competitively superior counterparts, they exhibited a greater increase in trait variability, particularly in fine-root traits, in response to competition, environmental heterogeneity and their combination. Our findings contribute to understanding how interspecific competition and intraspecific trait variability together structure plant communities.


Subject(s)
Plants , Seedlings , Phenotype , Trees
10.
J Fish Dis ; 47(7): e13945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523313

ABSTRACT

The extensive growth of intensive fish farming has led to a massive spread of infectious diseases. Nervous necrosis virus (NNV) is the causative agent of the viral encephalo- and retinopathy disease which has become a major threat for fish farming all over the globe. The devastating mortality rates recorded in disease outbreaks, especially when infected specimens are at early stages of development, have a high economic impact on the sector. Currently, vaccines are the most cost-effective preventing tool in the fight against viruses. Inactivated vaccines have the advantage of simplicity in their development at the same time as present the antigen in a similar manner than the natural infection in the host. Nevertheless, they usually trigger weaker immune responses needing adjuvants to boost their effectiveness. In this work, we have intraperitoneally vaccinated Senegalese sole juveniles (Solea senegalensis) with a previously designed inactivated vaccine against NNV based on binary ethylenimine (BEI), mixed or not with an oil-adjuvant. Our results demonstrated the potential activation of different immune pathways when the vaccine was administered alone compared to the oil-adjuvanted vaccine, both resulting in an equivalent partial improvement in survival following a NNV challenge. However, whilst the vaccine alone led to a significant increase in specific antibodies, in the adjuvanted version those antibodies were kept basal although with a slight improvement in their neutralization capacity. At transcriptional level, neither vaccine (adjuvanted or not) triggered the immune system activation during the vaccination period. However, after NNV infection, the BEI-inactivated vaccines alone and oil-adjuvanted both elicited the stimulation of antiviral responsive genes (rtp3, herc4), antigen presentation molecules (mhcii) and T-cell markers (cd8a) in the head-kidney. Additionally, the oil-adjuvanted vaccine appears to stimulate mediator cytokines (il6) and B-cell markers (ight and ighm). Surprisingly, when the adjuvant was administered alone, fish showed the highest survival rates concomitantly with a lack of NNV-IgM production, pointing to the possible induction of different immune pathways than the B-cell responses via antibodies by the adjuvant. Since this combined vaccine did not succeed in the full extension of protection against the pathogen, further studies should be performed focusing on unravelling the molecular mechanisms through which adjuvants trigger the immune response, both independently and when added to a vaccine antigen.


Subject(s)
Fish Diseases , Flatfishes , Nodaviridae , RNA Virus Infections , Vaccines, Inactivated , Viral Vaccines , Animals , Fish Diseases/prevention & control , Fish Diseases/virology , Fish Diseases/immunology , Flatfishes/immunology , Flatfishes/virology , Nodaviridae/immunology , RNA Virus Infections/veterinary , RNA Virus Infections/prevention & control , RNA Virus Infections/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccination/veterinary , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Vaccine/administration & dosage
11.
Trends Neurosci ; 47(4): 259-272, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508906

ABSTRACT

Middle age has historically been an understudied period of life compared to older age, when cognitive and brain health decline are most pronounced, but the scope for intervention may be limited. However, recent research suggests that middle age could mark a shift in brain aging. We review emerging evidence on multiple levels of analysis indicating that midlife is a period defined by unique central and peripheral processes that shape future cognitive trajectories and brain health. Informed by recent developments in aging research and lifespan studies in humans and animal models, we highlight the utility of modeling non-linear changes in study samples with wide subject age ranges to distinguish life stage-specific processes from those acting linearly throughout the lifespan.


Subject(s)
Brain , Cognition , Middle Aged , Animals , Humans , Aging
12.
Biotechnol J ; 19(3): e2300307, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472101

ABSTRACT

BACKGROUND: The worldwide growing demand for human insulin for treating diabetes could be supplied by transgenic animals producing insulin in their milk. METHODS AND RESULTS: Pseudo-lentivirus containing the bovine ß-casein promoter and human insulin sequences was used to produce modified adult fibroblasts, and the cells were used for nuclear transfer. Transgenic embryos were transferred to recipient cows, and one pregnancy was produced. Recombinant protein in milk was evaluated using western blotting and mass spectrometry. One transgenic cow was generated, and in milk analysis, two bands were observed in western blotting with a molecular mass corresponding to the proinsulin and insulin. The mass spectrometry analysis showed the presence of human insulin more than proinsulin in the milk, and it identified proteases in the transgenic milk that could convert proinsulin into insulin and insulin-degrading enzyme that could degrade the recombinant protein. CONCLUSION: The methodologies used for generating the transgenic cow allowed the detection of the production of recombinant protein in the milk at low relative expression compared to milk proteins, using mass spectrometry, which was efficient for detecting recombinant protein with low expression in milk. Milk proteases could act on protein processing converting recombinant protein to functional protein. On the other hand, some milk proteases could act in degrading the recombinant protein.


Subject(s)
Milk , Proinsulin , Female , Pregnancy , Animals , Cattle , Humans , Animals, Genetically Modified/metabolism , Proinsulin/analysis , Proinsulin/metabolism , Milk/chemistry , Recombinant Proteins/metabolism , Insulin/analysis , Peptide Hydrolases/metabolism
13.
Cell Death Dis ; 15(2): 150, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368415

ABSTRACT

Complex DNA damage (CDD), containing two or more DNA lesions within one or two DNA helical turns, is a signature of ionising radiation (IR) and contributes significantly to the therapeutic effect through cell killing. The levels and complexity of CDD increases with linear energy transfer (LET), however, the specific cellular response to this type of DNA damage and the critical proteins essential for repair of CDD is currently unclear. We performed an siRNA screen of ~240 DNA damage response proteins to identify those specifically involved in controlling cell survival in response to high-LET protons at the Bragg peak, compared to low-LET entrance dose protons which differ in the amount of CDD produced. From this, we subsequently validated that depletion of 8-oxoguanine DNA glycosylase (OGG1) and poly(ADP-ribose) glycohydrolase (PARG) in HeLa and head and neck cancer cells leads to significantly increased cellular radiosensitivity specifically following high-LET protons, whilst no effect was observed after low-LET protons and X-rays. We subsequently confirmed that OGG1 and PARG are both required for efficient CDD repair post-irradiation with high-LET protons. Importantly, these results were also recapitulated using specific inhibitors for OGG1 (TH5487) and PARG (PDD00017273). Our results suggest OGG1 and PARG play a fundamental role in the cellular response to CDD and indicate that targeting these enzymes could represent a promising therapeutic strategy for the treatment of head and neck cancers following high-LET radiation.


Subject(s)
DNA Glycosylases , Head and Neck Neoplasms , Humans , Protons , Linear Energy Transfer , DNA Damage , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/radiotherapy , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism
14.
Ecol Lett ; 27(2): e14373, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344890

ABSTRACT

Human activities have altered the species composition of assemblages through introductions and extinctions, but it remains unclear how those changes can affect the different facets of biodiversity. Here we assessed the impact of changes in species composition on taxonomic, functional, and phylogenetic diversity across 281 bird assemblages worldwide. To provide a more nuanced understanding of functional diversity, we distinguished morphological from life-history traits. We showed that shifts in species composition could trigger a global decline in avian biodiversity due to the high number of potential extinctions. Moreover, these extinctions were not random but unique in terms of function and phylogeny at the regional level. Our findings demonstrated that non-native species cannot compensate for these losses, as they are both morphologically and phylogenetically close to the native fauna. In the context of the ongoing biodiversity crisis, such alterations in the functional and phylogenetic structure of bird assemblages could heighten ecosystem vulnerability.


Subject(s)
Ecosystem , Endangered Species , Animals , Humans , Phylogeny , Biodiversity , Birds
15.
Mycoses ; 67(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38282360

ABSTRACT

Fungal skin infections are distributed worldwide and can be associated with economic and social traits. The immune response related to skin cells is complex and its understanding is essential to the comprehension of each cell's role and the discovery of treatment alternatives. The first studies of trained immunity (TI) described the ability of monocytes, macrophages and natural killer (NK) cells to develop a memory-like response. However, the duration of TI does not reflect the shorter lifespan of these cells. These conclusions supported later studies showing that TI can be observed in stem and haematopoietic cells and, more recently, also in non-immune skin cells such as fibroblasts, highlighting the importance of resident cells in response to skin disorders. Besides, the participation of less studied proinflammatory cytokines in the skin immune response, such as IL-36γ, shed light into a new possibility of inflammatory pathway blockade by drugs. In this review, we will discuss the skin immune response associated with fungal infections, the role of TI in skin and clinical evidence supporting opportunities and challenges of TI and other inflammatory responses in the pathogenesis of fungal skin infections.


Subject(s)
Mycoses , Trained Immunity , Humans , Immunity, Innate , Macrophages , Monocytes
16.
Traffic ; 25(1): e12927, 2024 01.
Article in English | MEDLINE | ID: mdl-38272446

ABSTRACT

Endoplasmic reticulum (ER) retention of misfolded glycoproteins is mediated by the ER-localized eukaryotic glycoprotein secretion checkpoint, UDP-glucose glycoprotein glucosyl-transferase (UGGT). The enzyme recognizes a misfolded glycoprotein and flags it for ER retention by re-glucosylating one of its N-linked glycans. In the background of a congenital mutation in a secreted glycoprotein gene, UGGT-mediated ER retention can cause rare disease, even if the mutant glycoprotein retains activity ("responsive mutant"). Using confocal laser scanning microscopy, we investigated here the subcellular localization of the human Trop-2-Q118E, E227K and L186P mutants, which cause gelatinous drop-like corneal dystrophy (GDLD). Compared with the wild-type Trop-2, which is correctly localized at the plasma membrane, these Trop-2 mutants are retained in the ER. We studied fluorescent chimeras of the Trop-2 Q118E, E227K and L186P mutants in mammalian cells harboring CRISPR/Cas9-mediated inhibition of the UGGT1 and/or UGGT2 genes. The membrane localization of the Trop-2 Q118E, E227K and L186P mutants was successfully rescued in UGGT1-/- cells. UGGT1 also efficiently reglucosylated Trop-2-Q118E-EYFP in cellula. The study supports the hypothesis that UGGT1 modulation would constitute a novel therapeutic strategy for the treatment of pathological conditions associated to misfolded membrane glycoproteins (whenever the mutation impairs but does not abrogate function), and it encourages the testing of modulators of ER glycoprotein folding quality control as broad-spectrum rescue-of-secretion drugs in rare diseases caused by responsive secreted glycoprotein mutants.


Subject(s)
Protein Folding , Rare Diseases , Animals , Humans , Rare Diseases/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Endoplasmic Reticulum/metabolism , Mutation , Mammals/metabolism , Glucosyltransferases/metabolism
17.
Microb Pathog ; 188: 106550, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262494

ABSTRACT

Cytokines of the interleukin (IL)-1 superfamily including the different IL-36 isoforms, have been reported as mediators of acute and chronic inflammation in human skin diseases, such as psoriasis. Here, we demonstrated for the first time that Sporothrix schenckii and S. brasiliensis, the fungi that cause subcutaneous infection sporotrichosis, can induce the expression of IL-36α, IL-36γ and IL-36Ra in human keratinocytes and primary peripheral blood mononuclear cells (PBMCs). Specifically, IL-36γ was differentially expressed by keratinocytes stimulated with Sporothrix yeasts when compared to the commensal microorganism Staphylococcus epidermidis. The exposure of keratinocytes to 24 h or 7-days culture supernatant of PBMCs stimulated with Sporothrix induced higher IL-36γ production compared to direct stimulation of keratinocytes with the live fungus. We identified that IL-36γ mRNA expression in keratinocytes is increased in the presence of IL-17, TNF, IL-1ß and IL-1α and these cytokines may act synergistically to maintain IL-36γ production. Lastly, using a cohort of 164 healthy individuals, we showed that individuals carrying variants of the IL36G gene (rs11690399 and rs11683399) exhibit increased IL-36γ production as well as increased innate cytokine production after Sporothrix exposure. Importantly, stimulation of PBMCs with recombinant IL-36γ increased the production of IL-1ß and IL-6, while IL-36Ra were able to decrease the concentration of these cytokines. Our findings contribute to the understanding of the pathogenesis of sporotrichosis and suggest that IL-36γ may be involved in maintaining the cytokine loop that leads to tissue destruction by exacerbating the immune response in sporotrichosis. Of high interest, we present the IL-36 signalling pathway as a potential new therapeutic target.


Subject(s)
Sporothrix , Sporotrichosis , Humans , Cytokines/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukins/genetics , Interleukins/metabolism , Keratinocytes , Leukocytes, Mononuclear , Sporothrix/genetics
18.
J Aquat Anim Health ; 36(1): 57-69, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37787030

ABSTRACT

OBJECTIVE: The nervous necrosis virus (NNV; genus Betanodavirus) is an aquatic pathogen that is responsible for a neurological disease affecting marine fish. Despite its almost worldwide distribution, global warming could favor the spread of NNV to new areas, highlighting the importance of conducting epidemiological surveys on both wild and farmed marine fish species. In this study, we assessed NNV prevalence in wild fish caught along the Galician Atlantic coast. METHODS: In total, 1277 fish were analyzed by reverse transcription real-time polymerase chain reaction. RESULT: Twenty two (1.72%) of those fish tested positive for NNV, including two species in which the pathogen had not yet been reported. CONCLUSION: The reassortant RGNNV/SJNNV (red-spotted grouper NNV/striped jack NNV) was detected in 55% of NNV-positive individuals, while the remaining 45% harbored the SJNNV-type genome. Moreover, from European Pilchard Sardina pilchardus and Atlantic Mackerel Scomber scombrus, we isolated four reassortant strains that carried amino acid mutations at key sites related to NNV-host interaction.


Subject(s)
Bass , Fish Diseases , Nodaviridae , Animals , Nodaviridae/genetics , Spain/epidemiology , Mutation , Genotype , Fish Diseases/epidemiology
19.
Nature ; 626(7998): 377-384, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38109938

ABSTRACT

Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.


Subject(s)
Archaea , Bacteria , Ecosystem , Evolution, Molecular , Genes, Archaeal , Genes, Bacterial , Genomics , Knowledge , Antimicrobial Peptides/genetics , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Biomarkers , Cell Movement/genetics , Colorectal Neoplasms/genetics , Genomics/methods , Genomics/trends , Metagenomics/trends , Multigene Family , Phylogeny , Reproducibility of Results
20.
Expert Rev Vaccines ; 22(1): 1136-1153, 2023.
Article in English | MEDLINE | ID: mdl-37936254

ABSTRACT

INTRODUCTION: Fungal infections are caused by a broad range of pathogenic fungi that are found worldwide with different geographic distributions, incidences, and mortality rates. Considering that there are relatively few approved medications available for combating fungal diseases and no vaccine formulation commercially available, multiple groups are searching for new antifungal drugs, examining drugs for repurposing and developing antifungal vaccines, in order to control deaths, sequels, and the spread of these complex infections. AREAS COVERED: This review provides a summary of advances in fungal vaccine studies and the different approaches under development, such as subunit vaccines, whole organism vaccines, and DNA vaccines, as well as studies that optimize the use of adjuvants. We conducted a literature search of the PubMed with terms: fungal vaccines and genus of fungal pathogens (Cryptococcus spp. Candida spp. Coccidioides spp. Aspergillus spp. Sporothrix spp. Histoplasma spp. Paracoccidioides spp. Pneumocystis spp. and the Mucorales order), a total of 177 articles were collected from database. EXPERT OPINION: Problems regarding the immune response development in an immunocompromised organism, the similarity between fungal and mammalian cells, and the lack of attention by health organizations to fungal infections are closely related to the fact that, at present, there are no fungal vaccines available for clinical use.


Subject(s)
Mycoses , Vaccines , Animals , Humans , Antifungal Agents/therapeutic use , Fungi , Mycoses/prevention & control , Mycoses/drug therapy , Mycoses/epidemiology , Vaccines/therapeutic use , Vaccine Development , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...