Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 773: 145110, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33940716

ABSTRACT

Although some studies have investigated the impact caused by chemicals used on water treatment (coagulants and oxidants) on cyanobacteria integrity, the isolated effect of shear stress during coagulation is still not fully understood. This study evaluated the impact of different velocity gradients, mixing times, and the addition of powdered activated carbon (PAC) on the integrity of Microcystis aeruginosa, Raphidiopsis raciborskii, and Dolichospermum circinale, known producers of toxin and taste and odor (T&O) compounds. No association was found between R. raciborskii cell lysis and velocity gradient, with or without PAC, demonstrating the high resilience of this taxon to shear stress. In contrast, an association was found for M. aeruginosa at the highest velocity gradient evaluated (1000 s-1) and for D. circinale above the lowest velocity gradient studied (600 s-1). After PAC addition, there was a reduction in the chances of finding M. aeruginosa intact cells above velocity gradient 800 s-1 at 45 s, while D. circinale show cell lysis in all the scenarios expect at 600 s-1 and 10 s of agitation. The additional impact of PAC on cell lysis may lead to more release of metabolites and shows the need to adjust the hydraulic conditions in the rapid mixing stage, especially when more "fragile" cyanobacteria are present. Neither cyanobacterial cell size nor morphology was shown to be relevant to shear stress sensitivity, indicating that cell wall composition might have been an important factor in controlling cell lysis.


Subject(s)
Cyanobacteria , Water Purification , Charcoal , Cylindrospermopsis , Powders
2.
Sci Total Environ ; 784: 146956, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-33894604

ABSTRACT

The presence of harmful algal bloom in many reservoirs around the world, alongside the lack of sanitation law/ordinance regarding cyanotoxin monitoring (particularly in developing countries), create a scenario in which the local population could potentially chronically consume cyanotoxin-contaminated waters. Therefore, it is crucial to develop low cost tools to detect possible systems failures and consequent toxin release inferred by morphological changes of cyanobacteria in the raw water. This paper aimed to look for the best combination of convolutional neural network (CNN), optimizer and image segmentation technique to differentiate P. agardhii trichomes before and after chemical stress caused by the addition of hydrogen peroxide. This method takes a step towards accurate monitoring of cyanobacteria in the field without the need for a mobile lab. After testing three different network architectures (AlexNet, 3ConvLayer and 2ConvLayer), four different optimizers (Adam, Adagrad, RMSProp and SDG) and five different image segmentations methods (Canny Edge Detection, Morphological Filter, HP filter, GrabCut and Watershed), the combination 2ConvLayer with Adam optimizer and GrabCut segmentation, provided the highest median accuracy (93.33%) for identifying H2O2-induced morphological changes in P. agardhii. Our results emphasize the fact that the trichome classification problem can be adequately tackled with a limited number of learned features due to the lack of complexity in micrographs from before and after chemical stress. To the authors' knowledge, this is the first time that CNNs were applied to detect morphological changes in cyanobacteria caused by chemical stress. Thus, it is a significant step forward in developing low cost tools based on image recognition, to shield water consumers, especially in the poorest regions, against cyanotoxin-contaminated water.


Subject(s)
Cyanobacteria , Planktothrix , Harmful Algal Bloom , Hydrogen Peroxide , Neural Networks, Computer
3.
Sci Total Environ ; 659: 1403-1414, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31096351

ABSTRACT

Many toxic and/or noxious cyanobacteria appear in nature with a filamentous, stacked cell arrangement called trichomes. Although water treatment can be optimized to keep cyanobacterial cells intact and avoid the release of toxic and/or noxious compounds, many physical and chemical stresses encountered during the treatment process may result in trichome truncation, decreasing treatment efficiency by allowing single cells or short trichomes to reach the product water. This makes it possible for harmful/noxious compounds as well as organic matter to enter the distribution system. Investigations in a pilot and three full-scale water treatment plants were carried out in order to elucidate the degree of trichome truncation across different unit processes. It was found that genera (Pseudanabaena, Planktolyngbya) with short trichomes (<10-12 cells per trichome), are hardly affected by the unit processes (loss of one to four cells respectively), while genera (Planktothrix, Geitlerinema, Dolichospermum) with longer trichomes (30+ cells per trichome) suffer from high degrees of truncation (up to 63, 30, and 56 cells per trichome respectively). The presence of a rigid sheath and/or mucilaginous layer appears to offer some protection from truncation. It was observed that certain unit processes alter the sensitivity or resilience of trichomes to disruption by physical stress. Some genera (Planktothrix, Geitlerinema) were sensitive to pre-oxidation making them more susceptible to shear stress, while Dolichospermum sp. appears more robust after pre-oxidation. While the potential of toxicogenic genera breaking through into the product water is a real danger, in the current study no toxicogenic cyanobacteria were observed. This work stresses the need for plant operators to study the incoming cyanobacterial composition in the raw water in order to adjust treatment parameters and thus limit the potential of toxic/noxious compound breakthrough.


Subject(s)
Cyanobacteria/physiology , Trichomes/physiology , Water Purification/methods , Microcystins
SELECTION OF CITATIONS
SEARCH DETAIL
...