Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 43(2): 223-229, 2022 02.
Article in English | MEDLINE | ID: mdl-34969666

ABSTRACT

BACKGROUND AND PURPOSE: The Normal Pressure Hydrocephalus Radscale is a combined scoring of 7 different structural imaging markers on preoperative brain CT or MR imaging in patients with idiopathic normal pressure hydrocephalus: callosal angle, Evans Index, Sylvian fissure dilation, apical sulcal narrowing, mean temporal horn diameter, periventricular WM lesions, and focal sulcal dilation. The purpose of this retrospective study was to assess the performance of the Normal Pressure Hydrocephalus Radscale in distinguishing idiopathic normal pressure hydrocephalus shunt responders from nonresponders. MATERIALS AND METHODS: The preoperative MR imaging and CT scans of 119 patients with idiopathic normal pressure hydrocephalus were scored using the Normal Pressure Hydrocephalus Radscale. A summary shunt-response score assessed within 6 months from ventriculoperitoneal shunt surgery, combining the effect on cognition, gait, and urinary incontinence, was used as a reference. The difference between the mean Normal Pressure Hydrocephalus Radscale for responders and nonresponders was tested using the Student t test. The area under the curve was calculated for the Normal Pressure Hydrocephalus Radscale to assess shunt response. To ascertain reproducibility, we assessed the interobserver agreement between the 2 independent observers as intraclass correlation coefficients for the Normal Pressure Hydrocephalus Radscale for 74 MR imaging scans and 19 CT scans. RESULTS: Ninety-four (79%) of 119 patients were shunt responders. The mean Normal Pressure Hydrocephalus Radscale score for shunt responders was 8.35 (SD, 1.53), and for nonresponders, 7.48 (SD, 1.53) (P = .02). The area under the curve for the Normal Pressure Hydrocephalus Radscale was 0.66 (range, 0.54-0.78). The intraclass correlation coefficient for the Normal Pressure Hydrocephalus Radscale was 0.86 for MR imaging and 0.82 for CT. CONCLUSIONS: The Normal Pressure Hydrocephalus Radscale showed moderate discrimination for shunt response but cannot, on its own, be used for selecting patients with idiopathic normal pressure hydrocephalus for shunt surgery.


Subject(s)
Hydrocephalus, Normal Pressure , Brain/diagnostic imaging , Brain/pathology , Brain/surgery , Humans , Hydrocephalus, Normal Pressure/complications , Hydrocephalus, Normal Pressure/diagnostic imaging , Hydrocephalus, Normal Pressure/surgery , Neuroimaging/methods , Reproducibility of Results , Retrospective Studies
2.
Acta Psychiatr Scand ; 140(3): 205-216, 2019 09.
Article in English | MEDLINE | ID: mdl-31265120

ABSTRACT

OBJECTIVE: Several studies have found an increase in hippocampal volume following electroconvulsive therapy (ECT), but the effect on cortical thickness has been less investigated. We aimed to examine the effects of ECT on cortical thickness and their associations with clinical outcome. METHOD: Using 3 Tesla MRI scanner, we obtained T1-weighted brain images of 18 severely depressed patients at three time points: before, right after and 6 months after a series of ECT. The thickness of 68 cortical regions was extracted using Free Surfer, and Linear Mixed Model was used to analyze the longitudinal changes. RESULTS: We found significant increases in cortical thickness of 26 regions right after a series of ECT, mainly within the frontal, temporal and insular cortex. The thickness returned to the baseline values at 6-month follow-up. We detected no significant decreases in cortical thickness. The increase in the thickness of the right lateral orbitofrontal cortex was associated with a greater antidepressant effect, r = 0.75, P = 0.0005. None of the cortical regions showed any associations with cognitive side effects. CONCLUSION: The increases in cortical thickness induced by ECT are transient. Further multimodal MRI studies should examine the neural correlates of these increases and their relationship with the antidepressant effect.


Subject(s)
Cerebral Cortex/pathology , Depressive Disorder/pathology , Depressive Disorder/therapy , Electroconvulsive Therapy , Adolescent , Adult , Aged , Aged, 80 and over , Cerebral Cortex/diagnostic imaging , Depressive Disorder/diagnostic imaging , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
3.
J Appl Physiol (1985) ; 116(7): 730-5, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24481962

ABSTRACT

The hydrostatic indifference point (HIP; where venous pressure is unaffected by posture) is located at the level of the diaphragm and is believed to indicate the orthostatic redistribution of blood, but it remains unknown whether HIP coincides with the indifference point for blood volume (VIP). During graded (± 20°) head-up (HUT) and head-down tilt (HDT) in 12 male volunteers, we determined HIP from central venous pressure and VIP from redistribution of both blood, using ultrasound imaging of the inferior caval vein (VIPui), and fluid volume, by regional electrical admittance (VIPadm). Furthermore, we evaluated whether inflation of medical antishock trousers (to 70 mmHg) affected HIP and VIP. Leaving cardiovascular variables unaffected by tilt, HIP was located 7 ± 4 cm (mean ± SD) below the 4th intercostal space (IC-4) during HUT and was similar (7 ± 3 cm) during HDT and higher (P < 0.0001) than both VIPui (HUT: 22 ± 16 cm; HDT: 13 ± 7 cm) and VIPadm (HUT: 29 ± 9 cm; HDT: 20 ± 9 cm below IC-4). During HUT antishock trousers elevated both HIP and VIPui [to 3 ± 5 cm (P = 0.028) and 17 ± 7 cm below IC-4 (P = 0.051), respectively], while VIPadm remained unaffected. By simultaneous recording of pressure and filling of the inferior caval vein as well as fluid distribution, we found HIP located corresponding to the diaphragm while VIP was placed low in the abdomen, and that medical antishock trousers elevated both HIP and VIP. The low indifference point for volume shows that the gravitational influence on distribution of blood is more profound than indicated by the indifference point for venous pressure.


Subject(s)
Blood Volume , Central Venous Pressure , Diaphragm/physiopathology , Dizziness/physiopathology , Posture , Vena Cava, Inferior/physiopathology , Adaptation, Physiological , Adult , Dizziness/diagnosis , Gravitation , Gravity Suits , Head-Down Tilt , Humans , Hydrostatic Pressure , Male , Regional Blood Flow , Tilt-Table Test , Ultrasonography , Vena Cava, Inferior/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...