Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Nat Commun ; 15(1): 5294, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906885

ABSTRACT

Determining the balance between DNA double strand break repair (DSBR) pathways is essential for understanding treatment response in cancer. We report a method for simultaneously measuring non-homologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ). Using this method, we show that patient-derived glioblastoma (GBM) samples with acquired temozolomide (TMZ) resistance display elevated HR and MMEJ activity, suggesting that these pathways contribute to treatment resistance. We screen clinically relevant small molecules for DSBR inhibition with the aim of identifying improved GBM combination therapy regimens. We identify the ATM kinase inhibitor, AZD1390, as a potent dual HR/MMEJ inhibitor that suppresses radiation-induced phosphorylation of DSBR proteins, blocks DSB end resection, and enhances the cytotoxic effects of TMZ in treatment-naïve and treatment-resistant GBMs with TP53 mutation. We further show that a combination of G2/M checkpoint deficiency and reliance upon ATM-dependent DSBR renders TP53 mutant GBMs hypersensitive to TMZ/AZD1390 and radiation/AZD1390 combinations. This report identifies ATM-dependent HR and MMEJ as targetable resistance mechanisms in TP53-mutant GBM and establishes an approach for simultaneously measuring multiple DSBR pathways in treatment selection and oncology research.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA Breaks, Double-Stranded , Glioblastoma , Temozolomide , Tumor Suppressor Protein p53 , Humans , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Glioblastoma/genetics , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , DNA Breaks, Double-Stranded/drug effects , Temozolomide/pharmacology , Cell Line, Tumor , Mutation , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , DNA Repair/drug effects , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Animals , DNA End-Joining Repair/drug effects , Mice , Phosphorylation/drug effects
2.
Clin Cancer Res ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743766

ABSTRACT

PURPOSE: Antibody-drug conjugates (ADCs) are targeted therapies with robust efficacy in solid cancers, and there is intense interest in using EGFR-specific ADCs to target EGFR-amplified glioblastoma (GBM). Given the molecular heterogeneity of GBM, bystander activity of ADCs may be important for determining treatment efficacy. In this study, the activity and toxicity of two EGFR-targeted ADCs, Losatuxizumab vedotin (ABBV-221) and Depatuxizumab mafodotin (Depatux-M), with similar auristatin toxins, were compared in GBM patient-derived xenografts (PDXs) and normal murine brain following direct infusion by convection enhanced delivery (CED). METHODS: EGFRviii-amplified and non-amplified GBM PDXs were used to determine in vitro cytotoxicity, in vivo efficacy, and bystander activities of ABBV-221 and Depatux-M. Non-tumor bearing mice were used to evaluate pharmacokinetics and toxicity of ADCs using LC-MS/MS and immunohistochemistry. RESULTS: CED improved intracranial efficacy of Depatux-M and ABBV-221 in three EGFRviii-amplified GBM PDX models (Median survival: 125 to >300 days vs 20-49 days with isotype-control AB095). Both ADCs had comparable in vitro and in vivo efficacy. However, neuronal toxicity and CD68+ microglia/macrophage infiltration were significantly higher in brains infused with ABBV-221, with the cell-permeable MMAE, as compared to Depatux-M, with the cell-impermeant MMAF. CED infusion of ABBV-221 into brain or incubation of ABBV-221 with normal brain homogenate resulted in significant release of MMAE, which is consistent with linker instability in the brain microenvironment. CONCLUSION: EGFR-targeting ADCs are promising therapeutic options for GBM when delivered intra-tumorally by CED. However, the linker and payload for the ADC must be carefully considered to maximize the therapeutic window.

3.
Sci Transl Med ; 16(734): eadj5962, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38354228

ABSTRACT

ATM is a key mediator of radiation response, and pharmacological inhibition of ATM is a rational strategy to radiosensitize tumors. AZD1390 is a brain-penetrant ATM inhibitor and a potent radiosensitizer. This study evaluated the spectrum of radiosensitizing effects and the impact of TP53 mutation status in a panel of IDH1 wild-type (WT) glioblastoma (GBM) patient-derived xenografts (PDXs). AZD1390 suppressed radiation-induced ATM signaling, abrogated G0-G1 arrest, and promoted a proapoptotic response specifically in p53-mutant GBM in vitro. In a preclinical trial using 10 orthotopic GBM models, AZD1390/RT afforded benefit in a cohort of TP53-mutant tumors but not in TP53-WT PDXs. In mechanistic studies, increased endogenous DNA damage and constitutive ATM signaling were observed in TP53-mutant, but not in TP53-WT, PDXs. In plasmid-based reporter assays, GBM43 (TP53-mutant) showed elevated DNA repair capacity compared with that in GBM14 (p53-WT), whereas treatment with AZD1390 specifically suppressed homologous recombination (HR) efficiency, in part, by stalling RAD51 unloading. Furthermore, overexpression of a dominant-negative TP53 (p53DD) construct resulted in enhanced basal ATM signaling, HR activity, and AZD1390-mediated radiosensitization in GBM14. Analyzing RNA-seq data from TCGA showed up-regulation of HR pathway genes in TP53-mutant human GBM. Together, our results imply that increased basal ATM signaling and enhanced dependence on HR represent a unique susceptibility of TP53-mutant cells to ATM inhibitor-mediated radiosensitization.


Subject(s)
Glioblastoma , Pyridines , Quinolones , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/radiotherapy , Signal Transduction , DNA Repair/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
4.
Mol Cancer Ther ; 23(5): 662-671, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38224566

ABSTRACT

Radioresistance of melanoma brain metastases limits the clinical utility of conventionally fractionated brain radiation in this disease, and strategies to improve radiation response could have significant clinical impact. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is critical for repair of radiation-induced DNA damage, and inhibitors of this kinase can have potent effects on radiation sensitivity. In this study, the radiosensitizing effects of the DNA-PKcs inhibitor peposertib were evaluated in patient-derived xenografts of melanoma brain metastases (M12, M15, M27). In clonogenic survival assays, peposertib augmented radiation-induced killing of M12 cells at concentrations ≥100 nmol/L, and a minimum of 16 hours exposure allowed maximal sensitization. This information was integrated with pharmacokinetic modeling to define an optimal dosing regimen for peposertib of 125 mpk dosed just prior to and 7 hours after irradiation. Using this drug dosing regimen in combination with 2.5 Gy × 5 fractions of radiation, significant prolongation in median survival was observed in M12-eGFP (104%; P = 0.0015) and M15 (50%; P = 0.03), while more limited effects were seen in M27 (16%, P = 0.04). These data support the concept of developing peposertib as a radiosensitizer for brain metastases and provide a paradigm for integrating in vitro and pharmacokinetic data to define an optimal radiosensitizing regimen for potent DNA repair inhibitors.


Subject(s)
Brain Neoplasms , DNA-Activated Protein Kinase , Melanoma , Radiation-Sensitizing Agents , Xenograft Model Antitumor Assays , Animals , Humans , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Mice , DNA-Activated Protein Kinase/antagonists & inhibitors , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/pharmacokinetics , Radiation-Sensitizing Agents/therapeutic use , Melanoma/drug therapy , Melanoma/pathology , Cell Line, Tumor , Sulfones/pharmacology , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use
5.
Neurooncol Adv ; 5(1): vdad066, 2023.
Article in English | MEDLINE | ID: mdl-37324218

ABSTRACT

Background: Although the epidermal growth factor receptor (EGFR) is a frequent oncogenic driver in glioblastoma (GBM), efforts to therapeutically target this protein have been largely unsuccessful. The present preclinical study evaluated the novel EGFR inhibitor WSD-0922. Methods: We employed flank and orthotopic patient-derived xenograft models to characterize WSD-0922 and compare its efficacy to erlotinib, a potent EGFR inhibitor that failed to provide benefit for GBM patients. We performed long-term survival studies and collected short-term tumor, plasma, and whole-brain samples from mice treated with each drug. We utilized mass spectrometry to measure drug concentrations and spatial distribution and to assess the impact of each drug on receptor activity and cellular signaling networks. Results: WSD-0922 inhibited EGFR signaling as effectively as erlotinib in in vitro and in vivo models. While WSD-0922 was more CNS penetrant than erlotinib in terms of total concentration, comparable concentrations of both drugs were measured at the tumor site in orthotopic models, and the concentration of free WSD-0922 in the brain was significantly less than the concentration of free erlotinib. WSD-0922 treatment provided a clear survival advantage compared to erlotinib in the GBM39 model, with marked suppression of tumor growth and most mice surviving until the end of the study. WSD-0922 treatment preferentially inhibited phosphorylation of several proteins, including those associated with EGFR inhibitor resistance and cell metabolism. Conclusions: WSD-0922 is a highly potent inhibitor of EGFR in GBM, and warrants further evaluation in clinical studies.

6.
Neurooncol Adv ; 4(1): vdac130, 2022.
Article in English | MEDLINE | ID: mdl-36071925

ABSTRACT

Background: EGFR targeting antibody-drug conjugates (ADCs) are highly effective against EGFR-amplified tumors, but poor distribution across the blood-brain barrier (BBB) limits their efficacy in glioblastoma (GBM) when administered systemically. We studied whether convection-enhanced delivery (CED) can be used to safely infuse ADCs into orthotopic patient-derived xenograft (PDX) models of EGFRvIII mutant GBM. Methods: The efficacy of the EGFR-targeted ADCs depatuxizumab mafodotin (Depatux-M) and Serclutamab talirine (Ser-T) was evaluated in vitro and in vivo. CED was performed in nontumor and tumor-bearing mice. Immunostaining was used to evaluate ADC distribution, pharmacodynamic effects, and normal cell toxicity. Results: Dose-finding studies in orthotopic GBM6 identified single infusion of 2 µg Ser-T and 60 µg Depatux-M as safe and effective associated with extended survival prolongation (>300 days and 95 days, respectively). However, with serial infusions every 21 days, four Ser-T doses controlled tumor growth but was associated with lethal toxicity approximately 7 days after the final infusion. Limiting dosing to two infusions in GBM108 provided profound median survival extension of over 200 days. In contrast, four Depatux-M CED doses were well tolerated and significantly extended survival in both GBM6 (158 days) and GBM108 (310 days). In a toxicity analysis, Ser-T resulted in a profound loss in NeuN+ cells and markedly elevated GFAP staining, while Depatux-M was associated only with modest elevation in GFAP staining. Conclusion: CED of Depatux-M is well tolerated and results in extended survival in orthotopic GBM PDXs. In contrast, CED of Ser-T was associated with a much narrower therapeutic window.

7.
Neuro Oncol ; 24(8): 1261-1272, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35231103

ABSTRACT

BACKGROUND: RBBP4 activates transcription by histone acetylation, but the partner histone acetyltransferases are unknown. Thus, we investigated the hypothesis that RBBP4 interacts with p300 in a complex in glioblastoma (GBM). METHODS: shRNA silencing of RBBP4 or p300 and RNAseq was used to identify genes co-regulated by RBBP4 and p300 in GBM43 patient-derived xenograft (PDX). RBBP4/p300 complex was demonstrated using proximity ligation assay (PLA) and ChIPseq delineated histone H3 acetylation and RBBP4/p300 complex binding in promoters/enhancers. Temozolomide (TMZ)-induced DNA double strand breaks (DSBs) were evaluated by γ-H2AX and proliferation by CyQuant and live cell monitoring assays. In vivo efficacy was based on survival of mice with orthotopic tumors. RESULTS: shRBBP4 and shp300 downregulated 4768 genes among which 1485 (31%) were commonly downregulated by both shRNAs, while upregulated genes were 2484, including 863 (35%) common genes. The pro-survival genes were the top-ranked among the downregulated genes, including C-MYC. RBBP4/p300 complex was demonstrated in the nucleus, and shRBBP4 or shp300 significantly sensitized GBM cells to TMZ compared to the control shNT in vitro (P < .05). Moreover, TMZ significantly prolonged the survival of mice bearing GBM22-shRBBP4 orthotopic tumors compared with control shNT tumors (median shNT survival 52 days vs. median shRBBP4 319 days; P = .001). CREB-binding protein (CBP)/p300 inhibitor CPI-1612 suppressed H3K27Ac and RBBP4/p300 complex target proteins, including C-MYC, and synergistically sensitized TMZ in vitro. Pharmacodynamic evaluation confirmed brain penetration by CPI-1612 supporting further investigation to evaluate efficacy to sensitize TMZ. CONCLUSIONS: RBBP4/p300 complex is present in GBM cells and is a potential therapeutic target.


Subject(s)
Brain Neoplasms , E1A-Associated p300 Protein , Glioblastoma , Retinoblastoma-Binding Protein 4 , Acetylation , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Survival , Drug Resistance, Neoplasm , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice , Promoter Regions, Genetic , Retinoblastoma-Binding Protein 4/genetics , Retinoblastoma-Binding Protein 4/metabolism , Temozolomide/pharmacology , Temozolomide/therapeutic use , Xenograft Model Antitumor Assays
8.
Neuro Oncol ; 24(3): 384-395, 2022 03 12.
Article in English | MEDLINE | ID: mdl-34232318

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is an incurable disease with few approved therapeutic interventions. Radiation therapy (RT) and temozolomide (TMZ) remain the standards of care. The efficacy and optimal deployment schedule of the orally bioavailable small-molecule tumor checkpoint controller lisavanbulin alone, and in combination with, standards of care were assessed using a panel of IDH-wildtype GBM patient-derived xenografts. METHODS: Mice bearing intracranial tumors received lisavanbulin +/-RT +/-TMZ and followed for survival. Lisavanbulin concentrations in plasma and brain were determined by liquid chromatography with tandem mass spectrometry, while flow cytometry was used for cell cycle analysis. RESULTS: Lisavanbulin monotherapy showed significant benefit (P < .01) in 9 of 14 PDXs tested (median survival extension 9%-84%) and brain-to-plasma ratios of 1.3 and 1.6 at 2- and 6-hours postdose, respectively, validating previous data suggesting significant exposure in the brain. Prolonged lisavanbulin dosing from RT start until moribund was required for maximal benefit (GBM6: median survival lisavanbulin/RT 90 vs. RT alone 69 days, P = .0001; GBM150: lisavanbulin/RT 143 days vs. RT alone 73 days, P = .06). Similar observations were seen with RT/TMZ combinations (GBM39: RT/TMZ/lisavanbulin 502 days vs. RT/TMZ 249 days, P = .0001; GBM26: RT/TMZ/lisavanbulin 172 days vs. RT/TMZ 121 days, P = .04). Immunohistochemical analyses showed a significant increase in phospho-histone H3 with lisavanbulin treatment (P = .01). CONCLUSIONS: Lisavanbulin demonstrated excellent brain penetration, significant extension of survival alone or in RT or RT/TMZ combinations, and was associated with mitotic arrest. These data provide a strong clinical rationale for testing lisavanbulin in combination with RT or RT/TMZ in GBM patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/pathology , Glioblastoma/pathology , Heterografts , Humans , Mice , Microtubules/metabolism , Microtubules/pathology , Temozolomide/therapeutic use
9.
Int J Radiat Oncol Biol Phys ; 111(5): e54-e62, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34400266

ABSTRACT

Genotoxic damage induced by radiation triggers a highly coordinated DNA damage response, and molecular inhibitors of key nodes within this complex response network can profoundly enhance the antitumor efficacy of radiation. This is especially true for drugs targeting the catalytic subunit of DNA-dependent protein kinase, which is a core component of the nonhomologous end-joining DNA repair pathway, and ataxia telangiectasia mutated, which coordinates cell cycle arrest, apoptosis, and DNA repair functionalities after radiation exposure. Unlike the more modest in vitro radiosensitizing effects seen with classic sensitizing agents such as cisplatin, 5-fluorouracil, or taxanes, DNA-dependent protein kinase or ataxia telangiectasia mutated inhibitors provide much more robust sensitizing effects in vitro, as might be anticipated from targeting these key DNA repair modulators. However, patients with homozygous inactivating mutations of ataxia telangiectasia mutated or mice with homozygous defects in DNA-dependent protein kinase (severe combined immunodeficiency) have profoundly enhanced acute normal tissue radiation reactions. Therefore, there is significant potential that the combination of small molecule inhibitors of these kinases with radiation could cause similar dose-limiting acute normal tissue toxicities. Similarly, although less understood, inhibition of these DNA repair response pathways could markedly increase the risk of late radiation toxicities. Because these potent radiosensitizers could be highly useful to improve local control of otherwise radiation-resistant tumors, understanding the potential for elevated risks of radiation injury is essential for optimizing therapeutic ratio and developing safe and informative clinical trials. In this review, we will discuss 2 straightforward models to assess the potential for enhanced mucosal toxicity in the oral cavity and small intestine established in our laboratories. We also will discuss similar strategies for evaluating potential drug-radiation interactions with regard to increased risks of debilitating late effects.


Subject(s)
Radiation-Sensitizing Agents/therapeutic use , Animals , Ataxia Telangiectasia , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA Damage , DNA Repair , DNA-Activated Protein Kinase/metabolism , Humans , Mice
10.
Neuro Oncol ; 23(12): 2042-2053, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34050676

ABSTRACT

BACKGROUND: Antibody drug conjugates (ADCs) targeting the epidermal growth factor receptor (EGFR), such as depatuxizumab mafodotin (Depatux-M), is a promising therapeutic strategy for glioblastoma (GBM) but recent clinical trials did not demonstrate a survival benefit. Understanding the mechanisms of failure for this promising strategy is critically important. METHODS: PDX models were employed to study efficacy of systemic vs intracranial delivery of Depatux-M. Immunofluorescence and MALDI-MSI were performed to detect drug levels in the brain. EGFR levels and compensatory pathways were studied using quantitative flow cytometry, Western blots, RNAseq, FISH, and phosphoproteomics. RESULTS: Systemic delivery of Depatux-M was highly effective in nine of 10 EGFR-amplified heterotopic PDXs with survival extending beyond one year in eight PDXs. Acquired resistance in two PDXs (GBM12 and GBM46) was driven by suppression of EGFR expression or emergence of a novel short-variant of EGFR lacking the epitope for the Depatux-M antibody. In contrast to the profound benefit observed in heterotopic tumors, only two of seven intrinsically sensitive PDXs were responsive to Depatux-M as intracranial tumors. Poor efficacy in orthotopic PDXs was associated with limited and heterogeneous distribution of Depatux-M into tumor tissues, and artificial disruption of the BBB or bypass of the BBB by direct intracranial injection of Depatux-M into orthotopic tumors markedly enhanced the efficacy of drug treatment. CONCLUSIONS: Despite profound intrinsic sensitivity to Depatux-M, limited drug delivery into brain tumor may have been a key contributor to lack of efficacy in recently failed clinical trials.


Subject(s)
Brain Neoplasms , Glioblastoma , Immunoconjugates , Pharmaceutical Preparations , Antibodies, Monoclonal, Humanized , Blood-Brain Barrier/metabolism , Brain Neoplasms/drug therapy , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glioblastoma/drug therapy , Humans
11.
Mol Cancer Ther ; 20(6): 1009-1018, 2021 06.
Article in English | MEDLINE | ID: mdl-33785646

ABSTRACT

Tesevatinib is a potent oral brain penetrant EGFR inhibitor currently being evaluated for glioblastoma therapy. Tesevatinib distribution was assessed in wild-type (WT) and Mdr1a/b(-/-)Bcrp(-/-) triple knockout (TKO) FVB mice after dosing orally or via osmotic minipump; drug-tissue binding was assessed by rapid equilibrium dialysis. Two hours after tesevatinib dosing, brain concentrations in WT and TKO mice were 0.72 and 10.03 µg/g, respectively. Brain-to-plasma ratios (Kp) were 0.53 and 5.73, respectively. With intraperitoneal infusion, brain concentrations were 1.46 and 30.6 µg/g (Kp 1.16 and 25.10), respectively. The brain-to-plasma unbound drug concentration ratios were substantially lower (WT mice, 0.03-0.08; TKO mice, 0.40-1.75). Unbound drug concentrations in brains of WT mice were 0.78 to 1.59 ng/g. In vitro cytotoxicity and EGFR pathway signaling were evaluated using EGFR-amplified patient-derived glioblastoma xenograft models (GBM12, GBM6). In vivo pharmacodynamics and efficacy were assessed using athymic nude mice bearing either intracranial or flank tumors treated by oral gavage. Tesevatinib potently reduced cell viability [IC50 GBM12 = 11 nmol/L (5.5 ng/mL), GBM6 = 102 nmol/L] and suppressed EGFR signaling in vitro However, tesevatinib efficacy compared with vehicle in intracranial (GBM12, median survival: 23 vs. 18 days, P = 0.003) and flank models (GBM12, median time to outcome: 41 vs. 33 days, P = 0.007; GBM6, 44 vs. 33 days, P = 0.007) was modest and associated with partial inhibition of EGFR signaling. Overall, tesevatinib efficacy in EGFR-amplified PDX GBM models is robust in vitro but relatively modest in vivo, despite a high brain-to-plasma ratio. This discrepancy may be explained by drug-tissue binding and compensatory signaling.


Subject(s)
Azabicyclo Compounds/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Quinazolines/therapeutic use , Animals , Azabicyclo Compounds/pharmacology , Disease Models, Animal , Female , Humans , Mice , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Signal Transduction
12.
Front Oncol ; 10: 535, 2020.
Article in English | MEDLINE | ID: mdl-32432031

ABSTRACT

Glioblastoma (GBM) is uniformly fatal with a 1-year median survival, despite best available treatment, including radiotherapy (RT). Impacts of prior RT on tumor recurrence are poorly understood but may increase tumor aggressiveness. Metabolic changes have been investigated in radiation-induced brain injury; however, the tumor-promoting effect following prior radiation is lacking. Since RT is vital to GBM management, we quantified tumor-promoting effects of prior RT on patient-derived intracranial GBM xenografts and characterized metabolic alterations associated with the protumorigenic microenvironment. Human xenografts (GBM143) were implanted into nude mice 24 hrs following 20 Gy cranial radiation vs. sham animals. Tumors in pre-radiated mice were more proliferative and more infiltrative, yielding faster mortality (p < 0.0001). Histologic evaluation of tumor associated macrophage/microglia (TAMs) revealed cells with a more fully activated ameboid morphology in pre-radiated animals. Microdialyzates from radiated brain at the margin of tumor infiltration contralateral to the site of implantation were analyzed by unsupervised liquid chromatography-mass spectrometry (LC-MS). In pre-radiated animals, metabolites known to be associated with tumor progression (i.e., modified nucleotides and polyols) were identified. Whole-tissue metabolomic analysis of pre-radiated brain microenvironment for metabolic alterations in a separate cohort of nude mice using 1H-NMR revealed a significant decrease in levels of antioxidants (glutathione (GSH) and ascorbate (ASC)), NAD+, Tricarboxylic acid cycle (TCA) intermediates, and rise in energy carriers (ATP, GTP). GSH and ASC showed highest Variable Importance on Projection prediction (VIPpred) (1.65) in Orthogonal Partial least square Discriminant Analysis (OPLS-DA); Ascorbate catabolism was identified by GC-MS. To assess longevity of radiation effects, we compared survival with implantation occurring 2 months vs. 24 hrs following radiation, finding worse survival in animals implanted at 2 months. These radiation-induced alterations are consistent with a chronic disease-like microenvironment characterized by reduced levels of antioxidants and NAD+, and elevated extracellular ATP and GTP serving as chemoattractants, promoting cell motility and vesicular secretion with decreased levels of GSH and ASC exacerbating oxidative stress. Taken together, these data suggest IR induces tumor-permissive changes in the microenvironment with metabolomic alterations that may facilitate tumor aggressiveness with important implications for recurrent glioblastoma. Harnessing these metabolomic insights may provide opportunities to attenuate RT-associated aggressiveness of recurrent GBM.

13.
Clin Cancer Res ; 26(5): 1094-1104, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31852831

ABSTRACT

PURPOSE: Glioblastoma is the most frequent and lethal primary brain tumor. Development of novel therapies relies on the availability of relevant preclinical models. We have established a panel of 96 glioblastoma patient-derived xenografts (PDX) and undertaken its genomic and phenotypic characterization. EXPERIMENTAL DESIGN: PDXs were established from glioblastoma, IDH-wildtype (n = 93), glioblastoma, IDH-mutant (n = 2), diffuse midline glioma, H3 K27M-mutant (n = 1), and both primary (n = 60) and recurrent (n = 34) tumors. Tumor growth rates, histopathology, and treatment response were characterized. Integrated molecular profiling was performed by whole-exome sequencing (WES, n = 83), RNA-sequencing (n = 68), and genome-wide methylation profiling (n = 76). WES data from 24 patient tumors was compared with derivative models. RESULTS: PDXs recapitulate many key phenotypic and molecular features of patient tumors. Orthotopic PDXs show characteristic tumor morphology and invasion patterns, but largely lack microvascular proliferation and necrosis. PDXs capture common and rare molecular drivers, including alterations of TERT, EGFR, PTEN, TP53, BRAF, and IDH1, most at frequencies comparable with human glioblastoma. However, PDGFRA amplification was absent. RNA-sequencing and genome-wide methylation profiling demonstrated broad representation of glioblastoma molecular subtypes. MGMT promoter methylation correlated with increased survival in response to temozolomide. WES of 24 matched patient tumors showed preservation of most genetic driver alterations, including EGFR amplification. However, in four patient-PDX pairs, driver alterations were gained or lost on engraftment, consistent with clonal selection. CONCLUSIONS: Our PDX panel captures the molecular heterogeneity of glioblastoma and recapitulates many salient genetic and phenotypic features. All models and genomic data are openly available to investigators.


Subject(s)
Biomarkers, Tumor/genetics , Exome Sequencing/methods , Genotype , Glioblastoma/classification , Glioblastoma/genetics , Mutation , Phenotype , Adult , Aged , Aged, 80 and over , Animals , Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/classification , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , ErbB Receptors/genetics , Female , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Male , Mice , Middle Aged , Neoplasm Staging , Promoter Regions, Genetic , Survival Rate , Temozolomide/pharmacology , Tumor Suppressor Proteins/genetics , Xenograft Model Antitumor Assays , Young Adult
14.
Radiat Res ; 193(2): 161-170, 2020 02.
Article in English | MEDLINE | ID: mdl-31877254

ABSTRACT

Modern small animal irradiation platforms provide for accurate delivery of radiation under 3D image guidance. However, leveraging these improvements currently comes at the cost of lower-throughput experimentation. Herein, we characterized setup accuracy and dosimetric robustness for mock/sham irradiation of a murine xenograft flank tumor model using the X-RAD SmART+ with the vendor-supplied Monte Carlo (MC) treatment planning system (SmART ATP). The chosen beam arrangement was parallel-opposing using a 20 mm square collimator, aligned off-axis for ipsilateral lung sparing. Using a cohort of five mice imaged with cone beam computed tomography (CBCT) over five consecutive mock-irradiation fractions, we compared inter-fraction setup variability resulting from a vendor-supplied multi-purpose bed with anesthesia nose cone with a more complicated immobilization solution with an integrated bite block with nose cone and Styrofoam platform. A hypothetical "high-throughput" image-guidance scenario was investigated, wherein the day 1 stage coordinates (resulting from CBCT guidance) were applied on days 2-5. Daily inter-fraction setup errors were evaluated per specimen (days 2-5) using CBCT-derived offsets from day 1 stage coordinates. Using the CBCT images and Monte Carlo dose calculation, 3D dosimetric plan robustness was evaluated for the vendor-supplied immobilization solution, for both the high-throughput guidance scenario as well as for use of daily CBCT-based alignment. Inter-fraction setup offset magnitude was 3.6 (±1.5) mm for the vendor-supplied immobilization compared to 3.3 (±1.8) mm for the more complicated solution. For the vendor-supplied immobilization, we found that daily CBCT was needed to adequately cover the flank tumors dosimetrically, given our chosen treatment approach.


Subject(s)
Cell Transformation, Neoplastic , Cone-Beam Computed Tomography , Dose Fractionation, Radiation , Radiotherapy Setup Errors , Animals , Cell Line, Tumor , Disease Models, Animal , Mice , Monte Carlo Method , Radiotherapy, Image-Guided
15.
Neuro Oncol ; 21(9): 1141-1149, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31121035

ABSTRACT

BACKGROUND: Predictive molecular biomarkers to select optimal treatment for patients with glioblastoma and other cancers are lacking. New strategies are needed when large randomized trials with correlative molecular data are not feasible. METHODS: Gene signatures (GS) were developed from 31 orthotopic glioblastoma patient-derived xenografts (PDXs), treated with standard therapies, to predict benefit from radiotherapy (RT-GS), temozolomide (Chemo-GS), or the combination (ChemoRT-GS). Independent validation was performed in a heterogeneously treated clinical cohort of 502 glioblastoma patients with overall survival as the primary endpoint. Multivariate Cox analysis was used to adjust for confounding variables and evaluate interactions between signatures and treatment. RESULTS: PDX models recapitulated the clinical heterogeneity of glioblastoma patients. RT-GS, Chemo-GS, and ChemoRT-GS were correlated with benefit from treatment in the PDX models. In independent clinical validation, higher RT-GS scores were associated with increased survival only in patients receiving RT (P = 0.0031, hazard ratio [HR] = 0.78 [0.66-0.92]), higher Chemo-GS scores were associated with increased survival only in patients receiving chemotherapy (P < 0.0001, HR = 0.66 [0.55-0.8]), and higher ChemoRT-GS scores were associated with increased survival only in patients receiving ChemoRT (P = 0.0001, HR = 0.54 [0.4-0.74]). RT-GS and ChemoRT-GS had significant interactions with treatment on multivariate analysis (P = 0.0009 and 0.02, respectively), indicating that they are bona fide predictive biomarkers. CONCLUSIONS: Using a novel PDX-driven methodology, we developed and validated 3 platform-independent molecular signatures that predict benefit from standard of care therapies for glioblastoma. These signatures may be useful to personalize glioblastoma treatment in the clinic and this approach may be a generalizable method to identify predictive biomarkers without resource-intensive randomized trials.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/genetics , Chemoradiotherapy, Adjuvant , Glioblastoma/genetics , Temozolomide/therapeutic use , Adult , Aged , Aged, 80 and over , Brain Neoplasms/therapy , Chemotherapy, Adjuvant , Combined Modality Therapy , DNA Methylation , DNA Modification Methylases , DNA Repair Enzymes , ErbB Receptors/genetics , Female , Glioblastoma/therapy , Humans , Isocitrate Dehydrogenase/genetics , Male , Middle Aged , Multivariate Analysis , Neurosurgical Procedures , PTEN Phosphohydrolase/genetics , Prognosis , Promoter Regions, Genetic , Proportional Hazards Models , RNA-Seq , Radiotherapy, Adjuvant , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins , Xenograft Model Antitumor Assays
16.
Br J Radiol ; 92(1095): 20180487, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30299986

ABSTRACT

OBJECTIVE:: Investigate the reproducibility of murine cranial positioning using solely a stereotactic stage, and quantify the potential improvements from the on-board image guidance of the X-RAD SmART irradiator. METHODS:: For intermouse reproducibility, athymic nude mice (N = 5, ×4 groups) were cranially fixed on a stereotactic stage. Each mouse was imaged via cone-beam CT (CBCT). A virtual isocenter target was placed in the brain, the stage shifted to that target, and the couch positions recorded. The mouse was removed from the stage and this process repeated twice (N=60 measurements). The first acquired CBCT coordinates (within each group of five mice) were used to define "stereotactic couch coordinates." CBCT shifts were calculated to quantify the accuracy of setup based on couch coordinates alone. For intramouse reproducibility, C57BL/6 mice (N=4) were imaged daily for 7 days. Each mouse had individual stereotactic coordinates defined from their first day of CBCT localization, and positional shifts required on the six subsequent days of imaging were quantified (N = 24 measurements). RESULTS:: The mean vector shift between stereotactic setup and CBCT alignment for inter and intramouse analysis was 0.78 ± 0.27 mm and 0.82 ± 0.34 mm, respectively. CONCLUSION:: Cranial irradiation that can permit positional uncertainties on the order of a millimeter can rely solely on stereotactic coordinates derived from a single daily CBCT. Irradiations of subregions requiring submillimeter accuracy require daily image guidance for each mouse. ADVANCES IN KNOWLEDGE:: This is the first investigation of stereotactic reproducibility using the X-RAD SmART and it suggests a method for increased efficiency in high-throughput experiments.


Subject(s)
Cone-Beam Computed Tomography/methods , Cranial Irradiation/methods , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Animals , Cone-Beam Computed Tomography/veterinary , Cranial Irradiation/veterinary , Mice , Mice, Inbred C57BL , Mice, Nude , Radiosurgery/veterinary , Radiotherapy Planning, Computer-Assisted/veterinary , Radiotherapy, Image-Guided/veterinary , Reproducibility of Results
17.
Nat Commun ; 9(1): 4904, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30464169

ABSTRACT

Therapeutic options for the treatment of glioblastoma remain inadequate despite concerted research efforts in drug development. Therapeutic failure can result from poor permeability of the blood-brain barrier, heterogeneous drug distribution, and development of resistance. Elucidation of relationships among such parameters could enable the development of predictive models of drug response in patients and inform drug development. Complementary analyses were applied to a glioblastoma patient-derived xenograft model in order to quantitatively map distribution and resulting cellular response to the EGFR inhibitor erlotinib. Mass spectrometry images of erlotinib were registered to histology and magnetic resonance images in order to correlate drug distribution with tumor characteristics. Phosphoproteomics and immunohistochemistry were used to assess protein signaling in response to drug, and integrated with transcriptional response using mRNA sequencing. This comprehensive dataset provides simultaneous insight into pharmacokinetics and pharmacodynamics and indicates that erlotinib delivery to intracranial tumors is insufficient to inhibit EGFR tyrosine kinase signaling.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Erlotinib Hydrochloride/pharmacokinetics , Glioblastoma/drug therapy , Animals , Antineoplastic Agents/administration & dosage , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride/administration & dosage , Female , Magnetic Resonance Imaging , Mice, Nude , Neoplasm Transplantation , Protein-Tyrosine Kinases/metabolism , Sequence Analysis, RNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
Clin Cancer Res ; 23(23): 7360-7374, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28939749

ABSTRACT

Purpose: CD90 (Thy-1) is a glycophosphatidylinositol-anchored glycoprotein considered as a surrogate marker for a variety of stem cells, including glioblastoma (GBM) stem cells (GSC). However, the molecular and cellular functions of CD90 remain unclear.Experimental Design: The function of CD90 in GBM was addressed using cellular models from immortalized and primary GBM lines, in vivo orthotopic mouse models, and GBM specimens' transcriptome associated with MRI features from GBM patients. CD90 expression was silenced in U251 and GBM primary cells and complemented in CD90-negative U87 cells.Results: We showed that CD90 is not only expressed on GSCs but also on more differentiated GBM cancer cells. In GBM patients, CD90 expression was associated with an adhesion/migration gene signature and with invasive tumor features. Modulation of CD90 expression in GBM cells dramatically affected their adhesion and migration properties. Moreover, orthotopic xenografts revealed that CD90 expression induced invasive phenotypes in vivo Indeed, CD90 expression led to enhanced SRC and FAK signaling in our GBM cellular models and GBM patients' specimens. Pharmacologic inhibition of these signaling nodes blunted adhesion and migration in CD90-positive cells. Remarkably, dasatinib blunted CD90-dependent GBM cell invasion in vivo and killed CD90high primary GSC lines.Conclusions: Our data demonstrate that CD90 is an actor of GBM invasiveness through SRC-dependent mechanisms and could be used as a predictive factor for dasatinib response in CD90high GBM patients. Clin Cancer Res; 23(23); 7360-74. ©2017 AACR.


Subject(s)
Brain Neoplasms/drug therapy , Cell Movement/genetics , Dasatinib/pharmacology , Glioblastoma/drug therapy , Thy-1 Antigens/genetics , Xenograft Model Antitumor Assays , Adult , Aged , Animals , Antineoplastic Agents/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Disease-Free Survival , Female , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Male , Mice , Middle Aged , Neoplastic Stem Cells/metabolism , Prognosis , Thy-1 Antigens/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism
19.
Mol Cancer Ther ; 16(12): 2735-2746, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28947502

ABSTRACT

Poly ADP-ribose polymerase (PARP) inhibitors, including talazoparib, potentiate temozolomide efficacy in multiple tumor types; however, talazoparib-mediated sensitization has not been evaluated in orthotopic glioblastoma (GBM) models. This study evaluates talazoparib ± temozolomide in clinically relevant GBM models. Talazoparib at 1-3 nmol/L sensitized T98G, U251, and GBM12 cells to temozolomide, and enhanced DNA damage signaling and G2-M arrest in vitroIn vivo cyclical therapy with talazoparib (0.15 mg/kg twice daily) combined with low-dose temozolomide (5 mg/kg daily) was well tolerated. This talazoparib/temozolomide regimen prolonged tumor stasis more than temozolomide alone in heterotopic GBM12 xenografts [median time to endpoint: 76 days versus 50 days temozolomide (P = 0.005), 11 days placebo (P < 0.001)]. However, talazoparib/temozolomide did not accentuate survival beyond that of temozolomide alone in corresponding orthotopic xenografts [median survival 37 vs. 30 days with temozolomide (P = 0.93), 14 days with placebo, P < 0.001]. Average brain and plasma talazoparib concentrations at 2 hours after a single dose (0.15 mg/kg) were 0.49 ± 0.07 ng/g and 25.5±4.1 ng/mL, respectively. The brain/plasma distribution of talazoparib in Bcrp-/- versus wild-type (WT) mice did not differ, whereas the brain/plasma ratio in Mdr1a/b-/- mice was higher than WT mice (0.23 vs. 0.02, P < 0.001). Consistent with the in vivo brain distribution, overexpression of MDR1 decreased talazoparib accumulation in MDCKII cells. These results indicate that talazoparib has significant MDR1 efflux liability that may restrict delivery across the blood-brain barrier, and this may explain the loss of talazoparib-mediated temozolomide sensitization in orthotopic versus heterotopic GBM xenografts. Mol Cancer Ther; 16(12); 2735-46. ©2017 AACR.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Blood-Brain Barrier/drug effects , Dacarbazine/analogs & derivatives , Glioblastoma/drug therapy , Phthalazines/therapeutic use , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Animals , Antineoplastic Agents, Alkylating/pharmacology , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Glioblastoma/pathology , Humans , Mice , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Temozolomide
20.
J Pharmacol Exp Ther ; 363(2): 136-147, 2017 11.
Article in English | MEDLINE | ID: mdl-28847917

ABSTRACT

This study investigated how differences in drug distribution and free fraction at different tumor and tissue sites influence the efficacy of the multikinase inhibitor ponatinib in a patient-derived xenograft model of glioblastoma (GBM). Efficacy studies in GBM6 flank (heterotopic) and intracranial (orthotopic) models showed that ponatinib is effective in the flank but not in the intracranial model, despite a relatively high brain-to-plasma ratio. In vitro binding studies indicated that flank tumor had a higher free (unbound) drug fraction than normal brain. The total and free drug concentrations, along with the tissue-to-plasma ratio (Kp) and its unbound derivative (Kp,uu), were consistently higher in the flank tumor than the normal brain at 1 and 6 hours after a single dose in GBM6 flank xenografts. In the orthotopic xenografts, the intracranial tumor core displayed higher Kp and Kp,uu values compared with the brain-around-tumor (BAT). The free fractions and the total drug concentrations, hence free drug concentrations, were consistently higher in the core than in the BAT at 1 and 6 hours postdose. The delivery disadvantages in the brain and BAT were further evidenced by the low total drug concentrations in these areas that did not consistently exceed the in vitro cytotoxic concentration (IC50). Taken together, the regional differences in free drug exposure across the intracranial tumor may be responsible for compromising efficacy of ponatinib in orthotopic GBM6.


Subject(s)
Brain Neoplasms/metabolism , Brain/metabolism , Glioblastoma/metabolism , Imidazoles/metabolism , Protein Kinase Inhibitors/metabolism , Pyridazines/metabolism , Xenograft Model Antitumor Assays/methods , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Brain/drug effects , Brain Neoplasms/drug therapy , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Female , Glioblastoma/drug therapy , HEK293 Cells , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Male , Mice , Mice, Nude , Protein Binding/physiology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridazines/pharmacology , Pyridazines/therapeutic use , Random Allocation , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...