Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 118(2): 704-15, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20819910

ABSTRACT

Reports indicate that toxic equivalency factors (TEFs) based primarily on rodent data do not accurately predict in vitro human responsiveness to certain dioxin-like chemicals (DLCs). To investigate this in cells responsive to dioxins and relevant to chloracne, normal human epidermal keratinocytes were treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and several DLCs, each with a TEF value of 0.1, representing three classes of congeners. We estimated half maximal effective concentration (EC50)-based donor-specific relative potency (REP) values for cytochrome P450 1A1 (CYP1A1) messenger RNA (mRNA) induction for TCDD, 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin (HxCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), 1,2,3,6,7,8-hexachlorodibenzofuran (HxCDF), and 3,3',4,4',5-pentachlorobiphenyl (PCB 126). We also determined EC50-based population-level REP values (n = 4) for CYP1A1 mRNA induction for TCDD, HxCDF, and PCB 126. Furthermore, an alternative factor, the relative threshold factor (RTF) based on the low end (threshold) of the dose-response curve, was calculated. Our results demonstrated that HxCDF had a population-based REP value of 0.98, 9.8-fold higher than its assigned TEF value of 0.1. Conversely, PCB 126 had an REP value of 0.0027 and an RTF of 0.0022, 37-fold and 45-fold less than its assigned TEF of 0.1, respectively. The REP values for HxCDD and TCDF were 0.24 and 0.10, respectively, similar to their assigned value of 0.1. Therefore, although the DLCs tested in the current study all possessed the same assigned TEF value of 0.1, congener-specific differences in REPs and RTFs were observed for human keratinocytes. These congener-specific discrepancies are likely because of differences in interspecies factors that have yet to be defined.


Subject(s)
Benzofurans/toxicity , Cytochrome P-450 CYP1A1/genetics , Dioxins/toxicity , Environmental Pollutants/toxicity , Gene Expression Regulation, Enzymologic/drug effects , Keratinocytes/drug effects , Polychlorinated Biphenyls/toxicity , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cytochrome P-450 CYP1A1/metabolism , Dose-Response Relationship, Drug , Humans , Keratinocytes/metabolism , RNA, Messenger/metabolism , Rats , Risk Assessment , Species Specificity
2.
Toxicol Sci ; 112(1): 257-72, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19692669

ABSTRACT

Toxicogenomics has great potential for enhancing our understanding of environmental chemical toxicity, hopefully leading to better informed human health risk assessments. This study employed toxicogenomic technology to reveal species differences in response to two prototypical aryl hydrocarbon receptor (AHR) agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin and the polychlorinated biphenyl (PCB) congener PCB 126. Dose-responses of primary cultures of rat and human hepatocytes were determined using species-specific microarrays sharing over 4000 gene orthologs. Forty-seven human and 79 rat genes satisfied dose-response criteria for both chemicals and were subjected to further analysis including the calculation of the 50% effective concentration and the relative potency (REP) of PCB 126 for each gene. Only five responsive orthologous genes were shared between the two species; yet, the geometric mean of the REPs for all rat and human modeled responsive genes were 0.06 (95% confidence interval [CI]; 0.03-0.1) and 0.002 (95% CI; 0.001-0.005), respectively, suggesting broad species differences in the initial events that follow AHR activation but precede toxicity. This indicates that there are species differences in both the specific genes that responded and the agonist potency and REP for those genes. This observed insensitivity of human cells to PCB 126 is consistent with more traditional measurements of AHR activation (i.e., cytochrome P450 1A1 enzyme activity) and suggests that the species difference in PCB 126 sensitivity is likely due to certain aspects of AHR function. That a species divergence also exists in this expanded AHR-regulated gene repertoire is a novel finding and should help when extrapolating animal data to humans.


Subject(s)
Hepatocytes/drug effects , Polychlorinated Biphenyls/toxicity , RNA, Messenger/genetics , Receptors, Aryl Hydrocarbon/agonists , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Hepatocytes/metabolism , Humans , Oligonucleotide Array Sequence Analysis , Rats
3.
Environ Toxicol Chem ; 28(4): 759-71, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19391682

ABSTRACT

Several populations of fishes inhabiting contaminated Atlantic Coast estuaries exhibit resistance to early life-stage (ELS) toxicities induced by halogenated aromatic hydrocarbons such as coplanar polychlorinated biphenyls (PCBs). These toxicities include mortality, circulatory failure, edema, and craniofacial malformations. The mechanisms behind resistance to halogenated aromatic hydrocarbon toxicity in these populations are unknown. First and second generation Atlantic tomcod Microgadus tomcod embryos derived from the Hudson River ([HR]; New York, USA) population are highly resistant to PCB-induced cytochrome P4501A (CYP1A) expression and ELS toxicity when compared to embryos of Miramichi River ([MR]; New Brunswick, Canada) and Shinnecock Bay ([SB]; New York, USA) origin. The present study sought to identify novel genes involved in population differences in response to PCB exposure using custom microarrays. Microarray probes consisted of unsequenced inserts of randomly picked clones from a tomcod cardiac cDNA library. Tomcod embryos from three populations (HR, MR, and SB) were exposed to two doses of an environmentally relevant mixture of coplanar PCBs and screened for dose- and population-specific patterns of gene expression. Clones displaying significant differences between populations exposed to the high dose of PCBs were identified by DNA sequencing. Of the 28 identified nonribosomal protein clones, none displayed expression patterns highly similar to CYP1A (altered in MR and SB, but not in HR). However, several transcripts representing biomarkers of cardiomyopathy in mammals (cardiac troponin T2, cathepsin L, and atrial natriuretic peptide) were differentially altered among the three tomcod populations by PCBs. Although the present study did not identify any novel genes associated with PCB resistance in tomcod, several potential molecular biomarkers of PCB exposure were revealed.


Subject(s)
Gadiformes/genetics , Gene Expression Profiling , Hydrocarbons, Halogenated/toxicity , Oligonucleotide Array Sequence Analysis/methods , Polychlorinated Biphenyls/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Animals , Atlantic Ocean , Cluster Analysis , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , DNA, Complementary/genetics , Embryo, Nonmammalian/drug effects , Gadiformes/embryology , Gene Library , Polychlorinated Biphenyls/analysis , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Toxicity Tests , Water Pollutants, Chemical/analysis
5.
Toxicol Sci ; 102(2): 291-309, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18178546

ABSTRACT

Chronic exposure of Sprague-Dawley (SD) rats to either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or Aroclor 1254 results in female-selective induction of hepatic tumors. The relative potency of dioxins and polychlorinated biphenyl mixtures, such as Aroclor 1254, is often estimated using the internationally endorsed toxic equivalency (TEQ) approach. Comparing the genome wide changes in gene expression in both genders following exposure to TEQ doses of these chemicals should identify critical sets of early response genes while further defining the concept of the TEQ of halogenated aromatic hydrocarbons. Aroclor 1254 at 0.6, 6.0, and 60 mg/kg body weight and TEQ doses of TCDD (0.3 and 3.0 mug/kg), calculated to match the top two Aroclor 1254 doses, were orally administered to SD rats for three consecutive days. Day 4 gene expression in hepatic tissue was determined using microarrays. A linear mixed-effects statistical model was developed to analyze the data in relation to treatment, gender, and gender * treatment (G*T) interactions. The genes most changed included 54 genes with and 51 genes without a significant model G*T term. The known aryl hydrocarbon receptor (AHR) battery genes (Cyp1a1, Cyp1a2, Cyp1b1, Aldh3a1), and novel genes, responded in a TEQ dose-dependent manner in both genders. However, an important observation was the apparent disruption of sexually dimorphic basal gene expression, particularly for female rats. Because many of these genes are involved in steroid metabolism, exposure to either TCDD or Aroclor 1254 could disrupt proliferative signals more in female rats as a possible consequence of altered estrogen metabolism. This study extends the findings of previous rodent bioassays by identifying groups of genes, other than the well-characterized AHR response genes, whose disruption may be important in the tumorigenic mechanism in this rat strain.


Subject(s)
/toxicity , Environmental Pollutants/toxicity , Gene Expression/drug effects , Polychlorinated Dibenzodioxins/toxicity , Sex Characteristics , Toxicogenetics , Administration, Oral , Animals , Dose-Response Relationship, Drug , Female , Gene Expression Profiling , Logistic Models , Male , Oligonucleotide Array Sequence Analysis , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
6.
Comp Biochem Physiol C Toxicol Pharmacol ; 147(2): 205-15, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17962083

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) have been connected to developmental toxicity in the early life-stages of many species by their ability to bind to the aryl hydrocarbon receptor (AHR), which dimerizes with ARNT (AHR nuclear translocator) to induce transcription of genes such as CYP1A1. ARNT also dimerizes with HIF (hypoxia-inducible factor alpha) to induce transcription of genes such as VEGF (vascular endothelial growth factor), suggesting that PAHs may interfere with transcription of VEGF by competing for ARNT. Herein, we address the molecular and developmental effects of exposures to the weak AHR agonist pyrene on the early life-stages of the sheepshead minnow Cyprinodon variegatus. Embryos were exposed under flow-through conditions to 0, 20, 60, or 150 ppb pyrene up to 432 hours post-fertilization (hpf). RNA was extracted at 5 time points (12, 24, 48, 96, and 432 hpf) and changes in CYP1A1 and VEGF expression were assessed by real-time RT-PCR. Since few genes have been documented for the sheepshead minnow, we first cloned and sequenced CYP1A1, VEGF and internal standard 18S rRNA. Pyrene significantly induced the AHR-regulated gene, CYP1A1, in a time- and dose-dependent manner, while pyrene failed to alter the HIF-regulated gene, VEGF. However, VEGF was found to change during various stages of normal development in this study. Although a normal hatch time (5 dpf) was observed for all treatments, pyrene-treated embryos showed dose-dependent abnormalities such as severe dorsal body curvature, mild pericardial and yolk-sac edema, and increased mortality. Taken together, these data indicate that embryonic exposure of sheepshead minnows to pyrene disrupts normal development and alters expression of an AHR/ARNT-regulated gene. In addition, embryonic exposure to pyrene failed to provide evidence of possible AHR-HIF pathway cross-talk since developmental expression of VEGF was unaltered.


Subject(s)
Abnormalities, Drug-Induced , Gene Expression Regulation, Developmental/drug effects , Killifishes/physiology , Life Cycle Stages/drug effects , Pyrenes/toxicity , Water Pollutants, Chemical/toxicity , Animals , Cloning, Molecular , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Dose-Response Relationship, Drug , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Embryonic Development/genetics , Life Cycle Stages/genetics , Receptors, Aryl Hydrocarbon/drug effects , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...