Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 4125, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33603032

ABSTRACT

Biofluorescence has been detected in several nocturnal-crepuscular organisms from invertebrates to birds and mammals. Biofluorescence in mammals has been detected across the phylogeny, including the monotreme duck-billed platypus (Ornithorhyncus anatinus), marsupial opossums (Didelphidae), and New World placental flying squirrels (Gluacomys spp.). Here, we document vivid biofluorescence of springhare (Pedetidae) in both museum specimens and captive individuals-the first documented biofluorescence of an Old World placental mammal. We explore the variation in biofluorescence across our sample and characterize its physical and chemical properties. The striking visual patterning and intensity of color shift was unique relative to biofluorescence found in other mammals. We establish that biofluorescence in springhare likely originates within the cuticle of the hair fiber and emanates, at least partially, from several fluorescent porphyrins and potentially one unassigned molecule absent from our standard porphyrin mixture. This discovery further supports the hypothesis that biofluorescence may be ecologically important for nocturnal-crepuscular mammals and suggests that it may be more broadly distributed throughout Mammalia than previously thought.

2.
J Am Chem Soc ; 140(13): 4691-4696, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29537834

ABSTRACT

Iron porphyrins are the active sites of many natural and artificial catalysts, and their photoinduced dynamics have been described as either relaxation into a vibrationally hot ground state or as a cascade through metal-centered states. In this work, we directly probe the metal center of iron(III) tetraphenyl porphyrin chloride (FeTPPCl) using femtosecond M2,3-edge X-ray absorption near-edge structure (XANES) spectroscopy. Photoexcitation at 400 nm produces a (π,π*) state that evolves in 70 fs to an iron(II) ligand-to-metal charge transfer (LMCT) state. The LMCT state relaxes to a vibrationally hot ground state in 1.13 ps, without involvement of (d,d) intermediates. The tabletop extreme-ultraviolet probe, combined with semiempirical ligand field multiplet calculations, clearly distinguishes between metal-centered and ligand-centered excited states and resolves competing accounts of Fe(III) porphyrin relaxation. This work introduces tabletop M-edge XANES as a valuable tool for measuring femtosecond dynamics of molecular transition metal complexes in the condensed phase.

3.
Inorg Chem ; 57(4): 1988-2001, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29384371

ABSTRACT

The kinetically robust hydride [t-HFe2(Me2pdt)(CO)2(dppv)2]+ ([t-H1]+) (Me2pdt2- = Me2C(CH2S-)2; dppv = cis-1,2-C2H2(PPh2)2) and related derivatives were prepared with 57Fe enrichment for characterization by NMR, FT-IR, and NRVS. The experimental results were rationalized using DFT molecular modeling and spectral simulations. The spectroscopic analysis was aimed at supporting assignments of Fe-H vibrational spectra as they relate to recent measurements on [FeFe]-hydrogenase enzymes. The combination of bulky Me2pdt2- and dppv ligands stabilizes the terminal hydride with respect to its isomerization to the 5-16 kcal/mol more stable bridging hydride ([µ-H1]+) with t1/2(313.3 K) = 19.3 min. In agreement with the nOe experiments, the calculations predict that one methyl group in [t-H1]+ interacts with the hydride with a computed CH···HFe distance of 1.7 Å. Although [t-H571]+ exhibits multiple NRVS features in the 720-800 cm-1 region containing the bending Fe-H modes, the deuterated [t-D571]+ sample exhibits a unique Fe-D/CO band at ∼600 cm-1. In contrast, the NRVS spectra for [µ-H571]+ exhibit weaker bands near 670-700 cm-1 produced by the Fe-H-Fe wagging modes coupled to Me2pdt2- and dppv motions.

4.
Eur J Inorg Chem ; 2017(25): 3169-3173, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28808414

ABSTRACT

The reaction of Fe2(pdt)(CO)6 with two equivalents of Ph2PC6H4NH2 (PNH2) affords the amido hydride HFe2(pdt)(CO)2(PNH2)(PNH) {[H1H]0, pdt2- = CH2(CH2S-)2}. Isolated intermediates in this conversion include Fe2(pdt)(CO)5-(κ1-PNH2) and Fe2(pdt)(CO)4(κ2-PNH2). X-ray crystallographic analysis of [H1H]0 shows that the chelating amino/amido-phosphine ligands occupy trans-dibasal positions. The 31P NMR spectrum indicates that [H1H]0 undergoes rapid proton exchange between the amido and amine centers. No exchange was observed for the hydride. Protonation of [H1H]0 gives [HFe2(pdt)(CO)2(PNH2)2]+ ([H21H]+), which contains two equivalent amino-phosphine ligands. Single-crystal X-ray crystallographic analysis of [H21H]+ also reveals hydrogen bonds between the exo amine protons with a THF molecule and BF4. Deprotonation of [H1H]0 with potassium tert-butoxide gave [HFe2(pdt)(CO)2(PNH)2]- ([1H]-), which was characterized spectroscopically. The complex has time-averaged C2 symmetry with two amido-phosphine ligands. FTIR spectroscopic measurements show that υCO shifts by approximately 20 cm-1 in the series [1H]-, [H1H]0, and [H21H]+. These shifts are comparable to those seen for the S-protonation of the (NC)2(CO)Fe-(µ-Scys)2Ni(Scys)2 site in the [NiFe]-hydrogenases.[1].

5.
Basic Clin Pharmacol Toxicol ; 103(6): 514-21, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19067679

ABSTRACT

In mice, cocaine is detoxified to inactive products by butyrylcholinesterase (BChE) and carboxylesterase. In human beings, cocaine detoxification is primarily by BChE. The focus of this investigation was to elucidate the importance of BChE in reducing pathophysiological effects following cocaine exposure. Previous studies examining the effects of cocaine on BChE deficient animals relied on chemical inhibition of BChE with tetraisopropyl pyrophosphoramide (iso-OMPA). The creation of the BChE knockout mouse has provided a model for studying pathological effects of cocaine in mice free of chemical confounders. We hypothesized that mice with low or no BChE activity would have reduced cocaine metabolism, leading to hepatotoxicity and cardiomyopathy. A high-resolution in vivo imaging system recorded cardiac and respiratory function following treatment with a carboxylesterase inhibitor and a high dose of cocaine (100 mg/kg, intraperitoneally). The BChE-/- mice demonstrated depressed respiration through 12 hr after dosing and abnormal respiratory patterns consisting of a pause at full inspiration (apneusis), whereas BChE+/+ mice had recovered normal respiration rates by 30 min. after dosing and exhibited no apneusis. Liver and cardiac histology sections were analysed following a 20 mg/kg intraperitoneally dose of cocaine administered daily for 7 days. BChE-/- mice treated for 7 days with the chronic low dose showed significant hepatotoxicity and cardiac perivascular fibrosis compared to BChE+/+ mice. The observed functional changes following acute high-dose and chronic low-dose cocaine in BChE-/- and +/- mice warrants further investigation into the possibility of increased cocaine toxicity in human beings with BChE deficiency.


Subject(s)
Butyrylcholinesterase/genetics , Cardiomyopathies/chemically induced , Chemical and Drug Induced Liver Injury/etiology , Cocaine/toxicity , Myocardium/pathology , Animals , Carboxylesterase/antagonists & inhibitors , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Chemical and Drug Induced Liver Injury/pathology , Cocaine/metabolism , Dose-Response Relationship, Drug , Fibrosis , Liver/pathology , Male , Mice , Mice, Knockout , Respiration/drug effects
6.
Am J Physiol Heart Circ Physiol ; 295(2): H543-54, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18599591

ABSTRACT

Multiple factors lead to the development and maintenance of chronic heart failure. Blockade of ErbB-2 or ErbB-4 tyrosine kinase receptor signaling leads to dilated cardiomyopathy. ErbB-1 may protect the heart against stress-induced injury and its ligand; epidermal growth factor (EGF) increases myocardial contractility, whereas heparin-binding EGF is essential for normal cardiac function. However, the role of ErbB-1 in control of cardiac function is not clear. We hypothesized that ErbB-1 is essential for maintaining adult cardiac function. Using the ecdysone-inducible gene expression system, we expressed humanized cardiomyocyte-specific dominant-negative ErbB-1 mutant receptors (hErbB-1-mut) in young adult mice that block endogenous cardiac ErbB-1 signaling. Molecular, morphological, and physiological tests (under anesthesia) were performed. As a result, hErbB-1-mut was expressed selectively in cardiomyocytes leading to the blockade of endogenous ErbB-1 phosphorylation and ErbB-2 transphosphorylation. An increase in left ventricular mass, atrial natriuretic factor expression, and histological changes were indicative of cardiac hypertrophy. Cardiac dilation, numerous cardiac lesions, and the loss of the clear boundary between cardiac fibrils were noted histologically. Early and long-term hErbB-1-mut induction led to a significant decrease in fractional shortening and to significant increases in left ventricular end-systolic diameter and volume. The treatment of adenylyl cyclase activator (forskolin analog) normalized the depressed cardiac function. Resting cardiac function returned to normal after reversing mutant expression. A 4-day survival rate of transverse-aortic constricted hErbB-1-mut mice was only 20% compared with 100% in controls. In conclusion, these observations indicate that the blockade of cardiac ErbB-1 signaling leads to the blockade of ErbB-2 signaling and that together they result in cardiac dysfunction.


Subject(s)
Cardiomyopathy, Dilated/physiopathology , ErbB Receptors/metabolism , Heart Failure/physiopathology , Myocytes, Cardiac/metabolism , Receptor, ErbB-2/metabolism , Signal Transduction , Ventricular Dysfunction, Left/physiopathology , Adenylyl Cyclases/metabolism , Animals , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cardiotonic Agents/pharmacology , Colforsin/pharmacology , Dobutamine/pharmacology , ErbB Receptors/genetics , Female , Heart Failure/metabolism , Heart Failure/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Mutation , Myocardial Contraction , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Phenotype , Phosphorylation , Signal Transduction/drug effects , Time Factors , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology
7.
J Pharmacol Exp Ther ; 324(3): 1146-54, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18056867

ABSTRACT

Butyrylcholinesterase (BChE) is an important enzyme for metabolism of ester drugs. Many humans have partial or complete BChE deficiency due to genetic variation. Our goal was to create a mouse model of BChE deficiency to allow testing of drug toxicity. For this purpose, we created the BChE knockout mouse by gene-targeted deletion of a portion of the BCHE gene (accession number M99492). The BChE(-/-) mouse had no BChE activity in plasma, but it had low residual butyrylthiocholine hydrolase activity in all other tissues attributed to carboxylesterase ES-10. The BChE(-/-) mouse had a normal phenotype except when challenged with drugs. Nicotinic receptor function as indicated by response to nicotine seemed to be normal in BChE(-/-) mice, but muscarinic receptor function as measured by response to oxotremorine and pilocarpine was altered. Heart rate, blood pressure, and respiration, measured in a Vevo imager, were similar in BChE(+/+) and BChE(-/-) mice. Like BChE(-/-) humans, the BChE(-/-) mouse responded to succinylcholine with prolonged respiratory arrest. Bambuterol was not toxic to BChE(-/-) mice, suggesting it is safe in BChE(-/-) humans. Challenge with 150 mg/kg pilocarpine i.p., a muscarinic agonist, or with 50 mg/kg butyrylcholine i.p., induced tonicclonic convulsions and death in BChE(-/-) mice. This suggests that butyrylcholine, like pilocarpine, binds to muscarinic receptors. In conclusion, the BChE(-/-) mouse is a suitable model for human BChE deficiency.


Subject(s)
Butyrylcholinesterase/deficiency , Butyrylcholinesterase/genetics , Disease Models, Animal , Animals , Butyrylcholinesterase/biosynthesis , Female , Humans , Mice , Mice, Knockout , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...