Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Oncol ; 62(4): 364-371, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37042166

ABSTRACT

BACKGROUND: Insulin resistance is a critical cause of metabolic dysfunctions. Metabolic dysfunction is common in patients with cancer and is associated with higher cancer recurrence rates and reduced overall survival. Yet, insulin resistance is rarely considered in the clinic and thus it is uncertain how frequently this condition occurs in patients with cancer. METHODS: To address this knowledge gap, we performed a systematic review and a meta-analysis guided by the Preferred Items for Systematic Review and Meta-Analyses (PRISMA) statement. We included studies assessing insulin resistance in patients with various cancer diagnoses, using the gold-standard hyperinsulinemic-euglycemic clamp method. Studies eligible for inclusion were as follows: (1) included cancer patients older than 18 years of age; (2) included an age-matched control group consisting of individuals without cancer or other types of neoplasms; (3) measured insulin sensitivity using the hyperinsulinemic-euglycemic clamp method. We searched the databases MEDLINE, Embase, and Cochrane Central Register of Controlled Trials for articles published from database inception through March 2023 with no language restriction, supplemented by backward and forward citation searching. Bias was assessed using funnel plot. FINDINGS: Fifteen studies satisfied the criteria. The mean insulin-stimulated rate of glucose disposal (Rd) was 7.5 mg/kg/min in control subjects (n = 154), and 4.7 mg/kg/min in patients with a cancer diagnosis (n = 187). Thus, the Rd mean difference was -2.61 mg/kg/min [95% confidence interval, -3.04; -2.19], p<.01). Heterogeneity among the included studies was insignificant (p=.24). INTERPRETATION: These findings suggest that patients with a cancer diagnosis are markedly insulin resistant. As metabolic dysfunction in patients with cancer associates with increased recurrence and reduced overall survival, future studies should address if ameliorating insulin resistance in this population can improve these outcomes thereby improving patient care.Key pointsMetabolic dysfunction increases cancer recurrence rates and reduces survival for patients with cancer.Insulin resistance is a critical cause of metabolic dysfunctions.To date, no comprehensive compilation of research investigating insulin resistance in cancer patients has been produced.In this meta-analysis, we found that patients with various cancers were markedly insulin-resistant.


Subject(s)
Insulin Resistance , Insulins , Neoplasms , Humans
2.
Metabolism ; 105: 154169, 2020 04.
Article in English | MEDLINE | ID: mdl-31987858

ABSTRACT

BACKGROUND: Redirecting glucose from skeletal muscle and adipose tissue, likely benefits the tumor's energy demand to support tumor growth, as cancer patients with type 2 diabetes have 30% increased mortality rates. The aim of this study was to elucidate tissue-specific contributions and molecular mechanisms underlying cancer-induced metabolic perturbations. METHODS: Glucose uptake in skeletal muscle and white adipose tissue (WAT), as well as hepatic glucose production, were determined in control and Lewis lung carcinoma (LLC) tumor-bearing C57BL/6 mice using isotopic tracers. Skeletal muscle microvascular perfusion was analyzed via a real-time contrast-enhanced ultrasound technique. Finally, the role of fatty acid turnover on glycemic control was determined by treating tumor-bearing insulin-resistant mice with nicotinic acid or etomoxir. RESULTS: LLC tumor-bearing mice displayed reduced insulin-induced blood-glucose-lowering and glucose intolerance, which was restored by etomoxir or nicotinic acid. Insulin-stimulated glucose uptake was 30-40% reduced in skeletal muscle and WAT of mice carrying large tumors. Despite compromised glucose uptake, tumor-bearing mice displayed upregulated insulin-stimulated phosphorylation of TBC1D4Thr642 (+18%), AKTSer474 (+65%), and AKTThr309 (+86%) in muscle. Insulin caused a 70% increase in muscle microvascular perfusion in control mice, which was abolished in tumor-bearing mice. Additionally, tumor-bearing mice displayed increased (+45%) basal (not insulin-stimulated) hepatic glucose production. CONCLUSIONS: Cancer can result in marked perturbations on at least six metabolically essential functions; i) insulin's blood-glucose-lowering effect, ii) glucose tolerance, iii) skeletal muscle and WAT insulin-stimulated glucose uptake, iv) intramyocellular insulin signaling, v) muscle microvascular perfusion, and vi) basal hepatic glucose production in mice. The mechanism causing cancer-induced insulin resistance may relate to fatty acid metabolism.


Subject(s)
Carcinoma, Lewis Lung/metabolism , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Muscle, Skeletal/blood supply , Adipose Tissue, White/metabolism , Animals , Blood Glucose/metabolism , Carcinoma, Lewis Lung/complications , Carcinoma, Lewis Lung/diagnostic imaging , Female , Glucose Intolerance/complications , Insulin Resistance , Liver/metabolism , Mice , Mice, Inbred C57BL , Microcirculation , Muscle, Skeletal/diagnostic imaging , Regional Blood Flow , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...