Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Geophys Res Lett ; 49(11): e2021GL097366, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35859850

ABSTRACT

Oxidation of isoprene by nitrate radicals (NO3) or by hydroxyl radicals (OH) under high NOx conditions forms a substantial amount of organonitrates (ONs). ONs impact NOx concentrations and consequently ozone formation while also contributing to secondary organic aerosol. Here we show that the ONs with the chemical formula C4H7NO5 are a significant fraction of isoprene-derived ONs, based on chamber experiments and ambient measurements from different sites around the globe. From chamber experiments we found that C4H7NO5 isomers contribute 5%-17% of all measured ONs formed during nighttime and constitute more than 40% of the measured ONs after further daytime oxidation. In ambient measurements C4H7NO5 isomers usually dominate both nighttime and daytime, implying a long residence time compared to C5 ONs which are removed more rapidly. We propose potential nighttime sources and secondary formation pathways, and test them using a box model with an updated isoprene oxidation scheme.

2.
Phys Chem Chem Phys ; 24(8): 5001-5013, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35142769

ABSTRACT

In the present study, time-resolved aerosol particle formation from sulfuric acid vapor is examined with special attention to the stabilization of molecular clusters in the early phase of unary nucleation. An important factor governing this process is the amount of condensable acid vapor. Here it is produced from fast gas-phase reactions in a batch-type reaction cell for which we introduce modifications enabling real-time monitoring. The key component for size- and time-resolved detection of ultrafine particles is a new 1 nm-SMPS. With this new tool at hand, the effect of varying the precursor concentration over two orders of magnitude is investigated. We demonstrate the ability to tune between different growth scenarios as indicated by the size-resolved particle traces which exhibit a transition from sigmoidal over quasi-stationary to peak-like shape. The second key parameter relevant for nucleation studies is the temperature-dependent cluster evaporation. Due to a temperature rise during the mixing stage of the experiment, evaporation is strongly promoted in the early phase. Therefore, the present study extends the T-range used in, e.g., smog chambers. We investigate this temperature effect in a kinetic simulation and can successfully combine simulated and measured data for validating theoretical evaporation rates obtained from DLPNO-CCSD(T0)-calculations.

3.
ACS Earth Space Chem ; 5(4): 785-800, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33889791

ABSTRACT

Alkyl nitrate (AN) and secondary organic aerosol (SOA) from the reaction of nitrate radicals (NO3) with isoprene were observed in the Simulation of Atmospheric PHotochemistry In a large Reaction (SAPHIR) chamber during the NO3Isop campaign in August 2018. Based on 15 day-long experiments under various reaction conditions, we conclude that the reaction has a nominally unity molar AN yield (observed range 90 ± 40%) and an SOA mass yield of OA + organic nitrate aerosol of 13-15% (with ∼50 µg m-3 inorganic seed aerosol and 2-5 µg m-3 total organic aerosol). Isoprene (5-25 ppb) and oxidant (typically ∼100 ppb O3 and 5-25 ppb NO2) concentrations and aerosol composition (inorganic and organic coating) were varied while remaining close to ambient conditions, producing similar AN and SOA yields under all regimes. We observe the formation of dinitrates upon oxidation of the second double bond only once the isoprene precursor is fully consumed. We determine the bulk partitioning coefficient for ANs (K p ∼ 10-3 m3 µg-1), indicating an average volatility corresponding to a C5 hydroxy hydroperoxy nitrate.

4.
J Phys Chem Lett ; 11(10): 4239-4244, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32357300

ABSTRACT

The role of sulfuric acid during atmospheric new particle formation is an ongoing topic of discussion. In this work, we provide quantitative experimental constraints for quantum chemically calculated evaporation rates for the smallest H2SO4-H2O clusters, characterizing the mechanism governing nucleation on a kinetic, single-molecule level. We compare experimental particle size distributions resulting from a highly supersaturated homogeneous H2SO4 gas phase with the results from kinetic simulations employing quantum chemically derived decomposition rates of electrically neutral H2SO4 molecular clusters up to the pentamer at a large range of relative humidities. By using high H2SO4 concentrations, we circumvent the uncertainties concerning contaminants and competing reactions present in studies at atmospheric conditions. We show good agreement between molecular simulation and experimental measurements and provide the first evaluation of theoretical predictions of the stabilization provided by water molecules.

5.
J Chem Phys ; 148(10): 104303, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29544311

ABSTRACT

We have developed a new model utilizing our existing kinetic gas phase models to simulate experimental particle size distributions emerging in dry supersaturated H2SO4 vapor homogeneously produced by rapid oxidation of SO2 through stabilized Criegee-Intermediates from 2-butene ozonolysis. We use a sectional method for simulating the particle dynamics. The particle treatment in the model is based on first principles and takes into account the transition from the kinetic to the diffusion-limited regime. It captures the temporal evolution of size distributions at the end of the ozonolysis experiment well, noting a slight underrepresentation of coagulation effects for larger particle sizes. The model correctly predicts the shape and the modes of the experimentally observed particle size distributions. The predicted modes show an extremely high sensitivity to the H2SO4 evaporation rates of the initially formed H2SO4 clusters (dimer to pentamer), which were arbitrarily restricted to decrease exponentially with increasing cluster size. In future, the analysis presented in this work can be extended to allow a direct validation of quantum chemically predicted stabilities of small H2SO4 clusters, which are believed to initiate a significant fraction of atmospheric new particle formation events. We discuss the prospects and possible limitations of the here presented approach.

6.
Angew Chem Int Ed Engl ; 53(3): 715-9, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24402798

ABSTRACT

Recently, direct kinetic experiments have shown that the oxidation of sulfur dioxide to sulfur trioxide by reaction with stabilized Criegee intermediates (CIs) is an important source of sulfuric acid in the atmosphere. So far, only small CIs, generated in photolysis experiments, have been directly detected. Herein, it is shown that large, stabilized CIs can be detected in the gas phase by FTIR spectroscopy during the ozonolysis of ß-pinene. Their transient absorption bands between 930 and 830 cm(-1) appear only in the initial phase of the ozonolysis reaction when the scavenging of stabilized CIs by the reaction products is slow. The large CIs react with sulfur dioxide to give sulfur trioxide and nopinone with a yield exceeding 80%. Reactant consumption and product formation in time-resolved ß-pinene ozonolysis experiments in the presence of sulfur dioxide have been kinetically modeled. The results suggest a fast reaction of sulfur dioxide with CIs arising from ß-pinene ozonolysis.


Subject(s)
Bridged Bicyclo Compounds/chemistry , Monoterpenes/chemistry , Ozone/chemistry , Sulfur Dioxide/chemistry , Alkenes/chemistry , Bicyclic Monoterpenes , Hydroxyl Radical/chemistry , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared , Sulfur Oxides/chemical synthesis , Sulfur Oxides/chemistry
7.
Phys Chem Chem Phys ; 14(45): 15637-40, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23090096

ABSTRACT

Recent studies have suggested that the reaction of stabilised Criegee Intermediates (CIs) with sulfur dioxide (SO(2)), leading to the formation of a carbonyl compound and sulfur trioxide, is a relevant atmospheric source of sulfuric acid. Here, the significance of this pathway has been examined by studying the formation of gas phase products and aerosol during the ozonolysis of ß-pinene and 2-butene in the presence of SO(2) in the pressure range of 10 to 1000 mbar. For ß-pinene at atmospheric pressure, the addition of SO(2) suppresses the formation of the secondary ozonide and leads to highly increased nopinone yields. A complete consumption of SO(2) is observed at initial SO(2) concentrations below the yield of stabilised CIs. In experiments using 2-butene a significant consumption of SO(2) and additional formation of acetaldehyde are observed at 1 bar. A consistent kinetic simulation of the experimental findings is possible when a fast CI + SO(2) reaction rate in the range of recent direct measurements [Welz et al., Science, 2012, 335, 204] is used. For 2-butene the addition of SO(2) drastically increases the observed aerosol yields at higher pressures. Below 60 mbar the SO(2) oxidation induced particle formation becomes inefficient pointing to the critical role of collisional stabilisation for sulfuric acid controlled nucleation at low pressures.


Subject(s)
Alkenes/chemistry , Bridged Bicyclo Compounds/chemistry , Monoterpenes/chemistry , Ozone/chemistry , Sulfur Dioxide/chemistry , Bicyclic Monoterpenes , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...