Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 216(4543): 249-56, 1982 Apr 16.
Article in English | MEDLINE | ID: mdl-17832725

ABSTRACT

The latest Mesozoic and earliest Tertiary sediments at Deep Sea Drilling Project site 524 provide an amplified record of environmental and biostratographic changes at the end of Cretaceous. Closely spaced samples, representing time intervals as short as 10(2) or 10(3) years, were analyzed for their bulk carbonate and trace-metal compositions, and for oxygen and carbon isotopic compositions. The data indicate that at the end of Cretaceous, when a high proportion of the ocean's planktic organisms were eliminated, an associated reduction in productivity led to a partial transfer of dissolved carbon dioxide from the oceans to the atmosphere. This resulted in a large increase of the atmospheric carbon dioxide during the next 50,000 years, which is believed to have caused a temperature rise revealed by the oxygen-isotope data. The lowermost Tertiary sediments at site 524 include fossils with Cretaceous affinities, which may include both reworked individuals and some forms that survived for a while after the catastrophe. Our data indicate that many of the Cretaceous pelagic organisms became extinct over a period of a few tens of thousands of years, and do not contradict the scenario of cometary impact as a cause of mass mortality in the oceans, as suggested by an iridium anomaly at the Cretaceous-Tertiary boundary.

2.
Science ; 175(4017): 59-60, 1972 Jan 07.
Article in English | MEDLINE | ID: mdl-17833981

ABSTRACT

Chondrules have been observed in several breccia samples returned by the Apollo 14 mission. These lunar chondrules are believed to have formed during a large impact event, perhaps the one that formed the Imbrian Basin. This suggests that some meteoritic chondrules are also formed by impact processes such as crystallization after shock melting and abrasion and diffusion in base-surge and fall-back deposits generated by impacts on planetary surfaces.

3.
Science ; 167(3918): 650-2, 1970 Jan 30.
Article in English | MEDLINE | ID: mdl-17781531

ABSTRACT

Five grams of coarse fines (10085,11) contains 1227 grains, mostly mafic holocrystalline rock fragments, microbreccia, and glass spatter and agglomerates with less abundant anorthosite fragments and regularly shaped glass. The crystalline lithic fragments in the coarse fines and microbreccias represent a closely related suite of gabbroid igneous rocks that have a wider range of modal analyses and textures than seen in the larger crystalline rock samples returned by Apollo 11. Petrographic evidence of shock metamorphism is common, and the abundant glass is almost all shock-produced. None of the glass observed is similar to tektite glass.

SELECTION OF CITATIONS
SEARCH DETAIL
...