Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38540929

ABSTRACT

The growing interest in functional foods is driven by the exploration of new foods with positive health effects. Pleasant sensory features are essential for consumer acceptance. In this work, we investigated the composition of the bioactive compounds, antioxidant activity, and aroma profiles of four edible flowers: Cucurbita moschata Duchesne, Dianthus chinensis L., Fuchsia regia (Vand. ex Vell.) Munz., and Viola cornuta L. For the first time, we quantified the water-soluble group of B vitamins. Significant variations in the content of soluble sugars, vitamins, and secondary metabolites were observed. V. cornuta showed the highest concentration of vitamin C and carotenoids, while C. moschata had the highest content of vitamin B and flavonoids. F. regia stood out for its exceptionally high content of total phenolics, while D. chinensis surpassed the other flowers in soluble sugar content. The aroma profile analysis revealed a diverse array of volatile organic compounds, with each species having its own unique composition. C. moschata was characterized by p-dimethoxybenzene and D. chinensis by non-terpene compounds; F. regia displayed high amounts of decanal and nonanal, while V. cornuta was rich in myrcene and α-farnesene. These findings provide valuable insights into the secondary metabolites and aroma profiles of these flowers, enhancing our understanding of their bioactive compounds and potential health benefits.

2.
Mol Hortic ; 3(1): 28, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38115113

ABSTRACT

Ornamental plants are used to decorate urban and peri-urban areas, and during their cultivation or utilisation, they can be exposed to abiotic stress. Salinity is an abiotic stress factor that limits plant growth and reduces the ornamental value of sensitive species. In this study, transcriptomic analysis was conducted to identify genes associated with tolerance or sensitivity to salinity in two hibiscus (Hibiscus rosa-sinensis L.) cultivars, 'Porto' and 'Sunny wind'. The physiological and biochemical parameters of plants exposed to 50, 100, or 200 mM NaCl and water (control) were monitored. Salinity treatments were applied for six weeks. After four weeks, differences between cultivars were clearly evident and 'Porto' was more tolerant than 'Sunny wind'. The tolerant cultivar showed lower electrolyte leakage and ABA concentrations, and higher proline content in the leaves. Accumulation of Na in different organs was lower in the flower organs of 'Porto'. At the molecular level, several differential expressed genes were observed between the cultivars and flower organs. Among the highly expressed DEGs, coat protein, alcohol dehydrogenase, and AP2/EREBP transcription factor ERF-1. Among the downregulated genes, GH3 and NCED were the most interesting. The differential expression of these genes may explain the salt stress tolerance of 'Porto'.

3.
Sensors (Basel) ; 20(11)2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32517314

ABSTRACT

This paper follows an integrated approach of Internet of Things based sensing and machine learning for crop growth prediction in agriculture. A Dynamic Bayesian Network (DBN) relates crop growth associated measurement data to environmental control data via hidden states. The measurement data, having (non-linear) sigmoid-type dynamics, are instances of the two classes observed and missing, respectively. Considering that the time series of the logistic sigmoid function is the solution to a reciprocal linear dynamic model, the exact expectation-maximization algorithm can be applied to infer the hidden states and to learn the parameters of the model. At iterative convergence, the parameter estimates are then used to derive a predictor of the measurement data several days ahead. To evaluate the performance of the proposed DBN, we followed three cultivation cycles of micro-tomatoes (MicroTom) in a mini-greenhouse. The environmental parameters were temperature, converted into Growing Degree Days (GDD), and the solar irradiance, both at a daily granularity. The measurement data were Leaf Area Index (LAI) and Evapotranspiration (ET). Although measurement data were only available scarcely, it turned out that high quality measurement data predictions were possible up to three weeks ahead.


Subject(s)
Algorithms , Bayes Theorem , Crops, Agricultural/growth & development , Agriculture , Internet of Things , Machine Learning
4.
Front Plant Sci ; 10: 1078, 2019.
Article in English | MEDLINE | ID: mdl-31611885

ABSTRACT

Tomato landraces, originated by adaptive responses to local habitats, are considered a valuable resource for many traits of agronomic interest, including fruit nutritional quality. Primary and secondary metabolites are essential determinants of fruit organoleptic quality, and some of them, such as carotenoids and phenolics, have been associated with beneficial proprieties for human health. Landraces' fruit taste and flavour are often preferred by consumers compared to the commercial varieties' ones. In an autumn-winter greenhouse hydroponic experiment, the response of three Southern-Italy tomato landraces (Ciettaicale, Linosa and Corleone) and one commercial cultivar (UC-82B) to different concentrations of sodium chloride (0 mM, 60 mM or 120 mM NaCl) were evaluated. At harvest, no losses in marketable yield were noticed in any of the tested genotypes. However, under salt stress, fresh fruit yield as well as fruit calcium concentration were higher affected in the commercial cultivar than in the landraces. Furthermore, UC-82B showed a trend of decreasing lycopene and total antioxidant capacity with increasing salt concentration, whereas no changes in these parameters were observed in the landraces under 60 mM NaCl. Landraces under 120 mM NaCl accumulated more fructose and glucose in the fruits, while salt did not affect hexoses levels in UC-82B. Ultra-performance liquid chromatography-tandem mass spectrometry analysis revealed differential accumulation of glycoalkaloids, phenolic acids, flavonoids and their derivatives in the fruits of all genotypes under stress. Overall, the investigated Italian landraces showed a different behaviour compared to the commercial variety UC-82B under moderate salinity stress, showing a tolerable compromise between yield and quality attributes. Our results point to the feasible use of tomato landraces as a target to select interesting genetic traits to improve fruit quality under stress conditions.

5.
Front Plant Sci ; 10: 1494, 2019.
Article in English | MEDLINE | ID: mdl-31921224

ABSTRACT

Iodine deficiency is a serious world-wide public health problem, as it is responsible for mental retardation and other diseases. The use of iodine-biofortified vegetables represents a strategic alternative to iodine enriched salt for people with a low sodium diet. However, at high concentrations iodine can be toxic to plants. Therefore, research on plant iodine toxicity is fundamental for the development of appropriate biofortification protocols. In this work, we compared two cultivars of sweet basil (Ocimum basilicum L.) with different iodine tolerance: "Tigullio," less tolerant, with green leaves, and "Red Rubin," more tolerant and with purple leaves. Four greenhouse hydroponic experiments were conducted in spring and in summer with different concentrations of iodine in the nutrient solution (0.1, 10, 50, 100, and 200 µM), supplied as potassium iodide (KI) or potassium iodate (KIO3). Plant growth was not affected either by 10 µM KI or by 100 µM KIO3, while KI concentrations higher than 50 µM significantly reduced leaf area, total plant dry matter and plant height. The severity of symptoms increased with time depending on the cultivar and the form of iodine applied. Growth inhibition by toxic iodine concentrations was more severe in "Tigullio" than in "Red Rubin," and KI was much more phytotoxic than KIO3. Leaf iodine concentration increased with the iodine concentration in the nutrient solution in both varieties, while the total antioxidant power was generally higher in the purple variety. In both basil cultivars, a strong negative correlation was found between the photosynthesis and the leaf iodine content, with significant differences between the regression lines for "Tigullio" and "Red Rubin." In conclusion, the greater tolerance to iodine of the "Red Rubin" variety was associated with the ability to withstand higher concentrations of iodine in leaf tissues, rather than to a reduced accumulation of this element in the leaves. The high phenolic content of "Red Rubin" could contribute to the iodine tolerance of this purple cultivar.

SELECTION OF CITATIONS
SEARCH DETAIL
...