Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(14): 7364-7374, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38544367

ABSTRACT

Wetting films can develop in the corners of pore structures during imbibition in a strongly wetting porous medium, which may significantly influence the two-phase flow dynamics. Due to the large difference in scales between main meniscus and corner film, accurate and efficient modeling of the dynamics of corner film remains elusive. In this work, we develop a novel two-pressure dynamic pore network model incorporating the interacting capillary bundle model to analyze the competition between the main meniscus and corner film flow in real porous media. A pore network with four-point star-shaped pore bodies and throat bonds is extracted from the real porous medium based on the pore shape factor and pore cross-sectional area, which is then decomposed into several layers of sub-pore networks, where the first layer of sub-pore network simulates the main meniscus flow while the upper layers characterize the corner film flow. The two-phase flow conductance of throat bonds for different layers of sub-pore networks are determined by high-resolution two-phase lattice Boltzmann modeling, thus inherently considering the viscous coupling effect. In addition, two artificial neural network models are developed to predict the two phases' flow conductance based on the shape of the throat cross section and the fluid properties. The accuracy of the developed model is validated with a lattice Boltzmann simulation of imbibition in a strongly wetting square tube. Then the model is used to simulate imbibition in a strongly wetting sandstone porous medium, and the competition between the main meniscus and the corner film flow is analyzed. The results show that with decreasing capillary number and viscosity ratio between wetting and nonwetting fluids, the development of the wetting corner film becomes more significant.

2.
Langmuir ; 40(8): 4382-4391, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38349330

ABSTRACT

Nanoporous adsorbents can mechanically swell or shrink once upon the accumulation of guest fluid molecules at their internal surfaces or in their cavities. Existing theories in this field attribute such sorption-induced swelling to a tensile force, while shrinkage is always associated with a contractive force. In this study, however, we propose that the sorption-induced deformation of a porous architecture is not solely dictated by the stress conditions but can also be largely influenced by its mechanical anisotropy. In more detail, the sorption-induced deformation of a polymeric slab is investigated using a hybrid molecular dynamics and Monte Carlo algorithm. When subjected to water loading, the slab is found to swell along its normal direction and display an overall positive volumetric strain. Moreover, the surface roughness is enhanced as a response to the surface energy decrease induced by the water covering the slab external surface. Unexpectedly, the in-plane deformation of the slab material seems to be highly constrained, so that it is far below its normal counterpart. This anisotropy is enhanced when the slab thickness decreases. With a thickness of around 1.35 nm, an in-plane shrinkage is observed throughout the entire hygroscopic range. A theoretical analysis based on a poromechanical model suggests that the anisotropic mechanical properties, which are common for a slab material, are the essence of the constrained in-plane swelling or even shrinkage under the isotropic sorption-induced tensile forces. This study, unveiling overlooked mechanisms of sorption-induced shrinkage in mechanically anisotropic materials, provides new insights into this field.

3.
Sci Total Environ ; 903: 166374, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37640068

ABSTRACT

The impact of heatwaves (HWs) on urban heat island (UHI) is a contentious topic with contradictory research findings. A comprehensive understanding of the response of urban and rural areas to HWs, considering the underlying cause of surface energy budget changes, remains elusive. This study attempts to address this gap by investigating a 2020 HW event in the Greater Sydney Area using the Advanced Weather Research and Forecasting (WRF) model with 250-m high resolution. Findings indicate that the HW intensifies the nighttime surface UHI by approximately 4 °C. An analysis of surface energy budgets reveals that urban areas store more heat during the HW due to receiving more solar radiation and less evapotranspiration compared to rural areas. The maximum heat storage flux in urban during the HW can be around 200 W/m2 higher than that during post-HW. The stored heat is released at nightime, raising the air temperature in the urban areas. Forests and savannas have relatively lower storage heat fluxes due to high transpiration and albedo, and the maximum heat storage flux is only around 50 W/m2 higher than that during post-HW. In contrast, a negative synergistic effect is detected between the 2-m UHI and HW. This may be because other meteorological conditions including wind have substantial impacts on the air temperature pattern. The strong hot and dry winds coming from the west resulted in a higher air temperature in the western urban district, and intra-city disparities are higher. Meanwhile, the western forest area also experiences higher temperatures due to the westward winds. In addition, changes in wind direction alter the temperature distribution in the northern rural region. The findings of the present study may provide some insights into urban heat mitigation during HW.

4.
Langmuir ; 39(32): 11345-11356, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37531624

ABSTRACT

Prevailing absorbents like wood-derived porous scaffolds or polymeric aerogels are normally featured with hierarchical porous structures. In former molecular simulation studies, sorption, deformation, and coupled sorption-deformation have been studied for single-scale materials, but scarcely for materials where micropores (<2 nm) and mesopores (2-50 nm) coexist. The present work, dealing with a mesoscopic slit pore between two slabs of microporous amorphous cellulose (AC), aims at modeling sorption-deformation interplay in hierarchical porous cellulosic structures inspired by polymeric modern adsorbents. Specifically, the atomic system is modeled by a hybrid workflow combining molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations. The results clarify the multiple sorption/deformation mechanisms in porous materials with different slit-pore sizes, including water filling in micropores, surface covering at the solid-air interface, and subsequent capillary condensation in mesopores. In particular, before the onset of capillary condensation, the sorption behavior of the AC matrix in the hybrid system is almost the same as that of bulk AC, in which sorption and deformation enhance each other through sorption-induced swelling and additional sorption in the newly created voids. Upon capillary condensation, the interaction between the micropores and the mesopore emerges. Water molecules in the mesopore exert a negative hydrostatic pressure perpendicular to the slab surface on the matrices, resulting in an increase in porosity and water content, a decrease in distance between the centers of mass (COMs) of the slabs, and thus a thinning of the slit pore. As described by Bangham's Law, the surface area of the rough slit-pore slab increases proportionally to the surface energy variation during surface covering. For a system composed of a compliant polymer like AC, however, the surface area enlargement does not result in an in-plane swelling as expected but instead in an in-plane shrinkage along with an increase in local roughness or irregularity (an accordion effect).

5.
ACS Nano ; 17(5): 4507-4514, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36846983

ABSTRACT

Diffusion of molecules in porous media is a critical process that is fundamental to numerous chemical, physical, and biological applications. The prevailing theoretical frameworks are challenged when explaining the complex dynamics resulting from the highly tortuous host structure and strong guest-host interactions, especially when the pore size approximates the size of diffusing molecule. This study, using molecular dynamics, formulates a semiempirical model based on theoretical considerations and factorization that offer an alternative view of diffusion and its link with the structure and behavior (sorption and deformation) of material. By analyzing the intermittent dynamics of water, microscopic self-diffusion coefficients are predicted. The apparent tortuosity, defined as the ratio of the bulk to the confined self-diffusion coefficients, is found to depend quantitatively on a limited set of material parameters: heat of adsorption, elastic modulus, and percolation probability, all of which are experimentally accessible. The proposed sorption-deformation-percolation model provides guidance on the understanding and fine-tuning of diffusion.

6.
ACS Nano ; 16(10): 16563-16573, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36201316

ABSTRACT

Precise diagnosis of the boundary and grade of tumors is especially important for surgical dissection. Recently, visible and near-infrared (Vis-NIR) absorption differences of tumors are demonstrated for a precise tumor diagnosis. Here, a template-assisted sequential printing strategy is investigated to construct lateral heterostructured Vis-NIR photodetectors, relying on the up-conversion nanoparticles (UCNPs)/perovskite arrays. Under the sequential printing process, the synergistic effect and co-confinement are demonstrated to induce the UCNPs to cover both sides of the perovskite microwire. The side-wrapped lateral heterogeneous UCNPs/perovskite structure exhibits more satisfactory responsiveness to Vis-NIR light than the common fully wrapped structure, due to sufficient visible-light-harvesting ability. The Vis-NIR photodetectors with R reaching 150 mA W-1 at 980 nm and 1084 A W-1 at 450 nm are employed for the rapid classification of glioma. The detection accuracy rate of 99.3% is achieved through a multimodal analysis covering the Vis-NIR light, which provides a reliable basis for glioma grade diagnosis. This work provides a concrete example for the application of photodetectors in tumor detection and surgical diagnosis.


Subject(s)
Glioma , Titanium , Humans , Oxides , Calcium Compounds , Glioma/diagnostic imaging
7.
Archit Intell ; 1(1): 5, 2022.
Article in English | MEDLINE | ID: mdl-35915820

ABSTRACT

Pressing problems in urban ventilation and thermal comfort affecting pedestrians related to current urban development and densification are increasingly dealt with from the perspective of climate change adaptation strategies. In recent research efforts, the prime objective is to accurately assess pedestrian-level wind (PLW) environments by using different simulation approaches that have reasonable computational time. This review aims to provide insights into the most recent PLW studies that use both established and data-driven simulation approaches during the last 5 years, covering 215 articles using computational fluid dynamics (CFD) and typical data-driven models. We observe that steady-state Reynolds-averaged Navier-Stokes (SRANS) simulations are still the most dominantly used approach. Due to the model uncertainty embedded in the SRANS approach, a sensitivity test is recommended as a remedial measure for using SRANS. Another noted thriving trend is conducting unsteady-state simulations using high-efficiency methods. Specifically, both the massively parallelized large-eddy simulation (LES) and hybrid LES-RANS offer high computational efficiency and accuracy. While data-driven models are in general believed to be more computationally efficient in predicting PLW dynamics, they in fact still call for substantial computational resources and efforts if the time for development, training and validation of a data-driven model is taken into account. The synthesized understanding of these modeling approaches is expected to facilitate the choosing of proper simulation approaches for PLW environment studies, to ultimately serving urban planning and building designs with respect to pedestrian comfort and urban ventilation assessment.

8.
Lab Chip ; 22(16): 3008-3014, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35781479

ABSTRACT

Designing and preparing a fast and easy-to-use immunosensing biochip are of great significance for clinical diagnosis and biomedical research. In particular, sensitive, specific, and early detection of biomarkers in trace samples promotes the application of point-of-care testing (POCT). Here, we demonstrate an all-printed immunosensing biochip with the characteristics of hydrodynamic enrichment and photonic crystal-enhanced fluorescence. Direct quantitative detection of cardiac biomarkers via one drop of blood is achieved in 10 min. After simulating the hydrodynamic behavior of one droplet serum on the printed assay, creatine kinase-MB (CK-MB) has been recognized and located on the photonic crystal arrays. Benefiting from the fluorescence enhancement effect, quantitative detection of CK-MB has been demonstrated from 0.01 ng ml-1 to 100 ng ml-1, which is superior to the conventional enzyme-linked immunosorbent assay (ELISA). This strategy provides a general and easy-to-use approach for fast quantitative detection of biomarkers, which would be improved further for portable clinical diagnostics and home medical monitoring.


Subject(s)
Myocardial Infarction , Point-of-Care Systems , Biomarkers , Creatine Kinase, MB Form , Enzyme-Linked Immunosorbent Assay , Humans
9.
J Colloid Interface Sci ; 626: 416-425, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35803141

ABSTRACT

HYPOTHESIS: Wicking flow in the wale direction of knit fabrics is slowed by capillary pressure minima during the transition at yarn contacts. The characteristic pore structure of yarns leads to an unfavorable free energy evolution and is the cause of these minima. EXPERIMENTS: Time-resolved synchrotron tomographic microscopy is employed to study the evolution of water configuration during wicking flow in interlacing yarns. Dynamic pore network modeling is used based on the obtained image data and distributions of delay times for pore intrusion. Good agreement is observed by comparison to the experimental data. FINDINGS: Yarn-to-yarn transition is found to coincide with slow water advance in a thin interface zone at the yarn contact. The pore spaces of the two yarns merge within this interface zone and provide a transition path. A deep capillary pressure minimum occurs while water passes through the center of the interface zone, effectively delaying the wicking flow. A pore network model considering pore intrusion delay times is expanded to include inter-yarn wicking and reproduce the observed wicking dynamics.


Subject(s)
Textiles , Water , Capillary Action
10.
Soft Matter ; 18(30): 5662-5675, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35861313

ABSTRACT

Pronounced fingering of the waterfront is observed for in-plane wicking in thin, aligned electrospun fibrous membranes. We hypothesize that a perturbation in capillary pressure triggers the onset of fingering, which grows in a non-local manner based on the waterfront gradient. Vertical and horizontal wicking in thin electrospun membranes of poly(ethylene-co-vinyl alcohol) (EVOH) fibers with varying fiber alignment and degree of orientation is studied with backlight photography. A non-local transport model considering the gradient of the waterfront is developed, where fiber orientation is modeled with a correlated random field. The model shows that a transition from straight to highly fingered waterfront occurs during water uptake as observed in the experiment. The size and shape of the fingers depend on fiber orientation. Based on good model agreement, we show that, during wicking in thin electrospun membranes, fingering is initially triggered by a perturbation in capillary pressure caused by the underlying anisotropic and heterogeneous membrane structure which grows in a non-local manner depending on the waterfront gradient.

11.
J Colloid Interface Sci ; 625: 1-11, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35714401

ABSTRACT

The spontaneous imbibition of a liquid within porous media, known as wicking, can display uncommon features in textiles and yarns. Yarns exhibited step-wise wicking dynamics not captured by current models. HYPOTHESIS: Wicking dynamics in yarns not only depend on inter-fiber pore filling, but are mainly determined by the pore-to-pore transition processes and the structure of the pore network. EXPERIMENTS: Fast X-ray tomographic microscopy is employed to reveal the pore scale processes and neutron radiography for the macroscopic water uptake in yarns. A semi-empirical pore network model is presented that employs the measured pore network topology and pore scale dynamics to reproduce the experimentally observed wicking dynamics in yarns. FINDINGS: The yarn pore system is a sparse network of long and narrow pores that promotes step-wise uptake dynamics. Wicking in yarns displays fast pore filling events in the order of seconds and long waiting times between filling events up to several minutes while navigating the pore network. As main result, we find that a few filling events directly determine the macroscopic behavior of wicking in the sparse pore network of yarns. It is necessary to consider pore-to-pore transition waiting times and the pore network structure to explain the characteristics of wicking dynamics in yarns.


Subject(s)
Textiles , Capillary Action
12.
Langmuir ; 38(19): 6023-6035, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35512019

ABSTRACT

In this work, a numerical model for isothermal liquid-vapor phase change (evaporation) of the two-component air-water system is proposed based on the pseudopotential lattice Boltzmann method. Through the Chapman-Enskog multiscale analysis, we show that the model can correctly recover the macroscopic governing equations of the multicomponent multiphase system with a built-in binary diffusion mechanism. The model is verified based on the two-component Stefan problem where the measured binary diffusivity is consistent with theoretical analysis. The model is then applied to convective drying of a dual-porosity porous medium at the pore scale. The simulation captures a classical transition in the drying process of porous media, from the constant rate period (CRP, first phase) showing significant capillary pumping from large to small pores, to the falling rate period (FRP, second phase) with the liquid front receding in small pores. It is found that, in the CRP, the evaporation rate increases with the inflow Reynolds number (Re), while in the FRP, the evaporation curves almost collapse at different Res. The underlying mechanism is elucidated by introducing an effective Péclet number (Pe). It is shown that convection is dominant in the CRP and diffusion in the FRP, as evidenced by Pe > 1 and Pe < 1, respectively. We also find a log-law dependence of the average evaporation rate on the inflow Re in the CRP regime. The present work provides new insights into the drying physics of porous media and its direct modeling at the pore scale.

13.
Phys Rev E ; 105(2-2): 025101, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35291136

ABSTRACT

The classical D^{2}-Law states that the square of the droplet diameter decreases linearly with time during its evaporation process, i.e., D^{2}(t)=D_{0}^{2}-Kt, where D_{0} is the droplet initial diameter and K is the evaporation constant. Though the law has been widely verified by experiments, considerable deviations are observed in many cases. In this work, a revised theoretical analysis of the single droplet evaporation in finite-size open systems is presented for both two-dimensional (2D) and 3D cases. Our analysis shows that the classical D^{2}-Law is only applicable for 3D large systems (L≫D_{0}, L is the system size), while significant deviations occur for small (L≤5D_{0}) and/or 2D systems. Theoretical solution for the temperature field is also derived. Moreover, we discuss in detail the proper numerical implementation of droplet evaporation in finite-size open systems by the mesoscopic lattice Boltzmann method (LBM). Taking into consideration shrinkage effects and an adaptive pressure boundary condition, droplet evaporation in finite-size 2D/3D systems with density ratio up to 328 within a wide parameter range (K=[0.003,0.18] in lattice units) is simulated, and remarkable agreement with the theoretical solution is achieved, in contrast to previous simulations. The present work provides insights into realistic droplet evaporation phenomena and their numerical modeling using diffuse-interface methods.

14.
Transp Porous Media ; 140(1): 395-420, 2021.
Article in English | MEDLINE | ID: mdl-34720284

ABSTRACT

Drying of porous media is governed by a combination of evaporation and movement of the liquid phase within the porous structure. Contact angle hysteresis induced by surface roughness is shown to influence multi-phase flows, such as contact line motion of droplet, phase distribution during drainage and coffee ring formed after droplet drying in constant contact radius mode. However, the influence of contact angle hysteresis on liquid drying in porous media is still an unanswered question. Lattice Boltzmann model (LBM) is an advanced numerical approach increasingly used to study phase change problems including drying. In this paper, based on a geometric formulation scheme to prescribe contact angle, we implement a contact angle hysteresis model within the framework of a two-phase pseudopotential LBM. The capability and accuracy of prescribing and automatically measuring contact angles over a large range are tested and validated by simulating droplets sitting on flat and curved surfaces. Afterward, the proposed contact angle hysteresis model is validated by modeling droplet drying on flat and curved surfaces. Then, drying of two connected capillary tubes is studied, considering the influence of different contact angle hysteresis ranges on drying dynamics. Finally, the model is applied to study drying of a dual-porosity porous medium, where phase distribution and drying rate are compared with and without contact angle hysteresis. The proposed model is shown to be capable of dealing with different contact angle hysteresis ranges accurately and of capturing the physical mechanisms during drying in different porous media including flat and curved geometries. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11242-021-01644-9.

15.
Sci Adv ; 7(37): eabi8919, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516889

ABSTRACT

Despite the thousands of years of wood utilization, the mechanisms of wood hygromechanics remain barely elucidated, owing to the nanoscopic system size and highly coupled physics. This study uses molecular dynamics simulations to systematically characterize wood polymers, their mixtures, interface, and composites, yielding an unprecedented micromechanical dataset including swelling, mechanical weakening, and hydrogen bonding, over the full hydration range. The rich data reveal the mechanism of wood cell wall hygromechanics: Cellulose fiber dominates the mechanics of cell wall along the longitudinal direction. Hemicellulose glues lignin and cellulose fiber together defining the cell wall mechanics along the transverse direction, and water severely disturbs the hemicellulose-related hydrogen bonds. In contrast, lignin is rather hydration independent and serves mainly as a space filler. The moisture-induced highly anisotropic swelling and weakening of wood cell wall is governed by the interplay of cellulose reinforcement, mechanical degradation of matrix, and fiber-matrix interface.

16.
Sci Total Environ ; 797: 149067, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34346370

ABSTRACT

The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at different levels, ranging from the Richardson number of 0.31 to 2.07. A steepness ratio, that is, the ratio of windward and leeward building heights, is proposed to characterise the geometrical influence of street canyons surrounded by buildings of non-uniform height. To study the thermal effects of building façades and ground on surrounding flow, surfaces of building models and the ground between them are heated up and maintained at three different temperatures to induce buoyant flows of different strength. The transition of the canyon flow from the typical rooftop shear-layer driven vortex to the buoyant plume type of flow is clearly revealed from the measurement results, which enhances the air removal that takes place at the roof-level of the two canyons. However, due to the different steepness of the canyons, the air removal rate from the steep canyon of a steepness ratio 2.52 is approximately 50% of that from the flat canyon with a steepness ratio of 1.53 in the buoyant plume-driven case because the downward flush flow along the windward façade suppresses the ascending plumes in the steep canyon. At the pedestrian level, the wind field is jointly dominated by the interplay between canyon-wide vortical flow and the buoyant plume rising ascending from the ground. The dynamics of non-isothermal flow in flat and steep canyons are revealed in detail, the implication of which is that the steepness of street canyons has to be considered in urban morphology planning, as well as in simplified geometrical representations of street canyons and in simplified urban canopy models.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Cities , City Planning , Hot Temperature , Models, Theoretical , Rheology , Vehicle Emissions/analysis
17.
Phys Rev E ; 103(5-1): 053101, 2021 May.
Article in English | MEDLINE | ID: mdl-34134200

ABSTRACT

What are the mechanisms at play in the spontaneous imbibition dynamics in polyethylene terephthalate filament yarns at pore scale? Processes at pore scale such as waiting times between the filling of two neighboring pores, as observed in special irregular porous media, like yarns, may overrule the predicted behavior by well-known laws such as Washburn's law. While the imbibition physics are well known, classic models like Washburn's law cannot explain the dynamics observed for yarns. The stepwise dynamics is discussed in terms of the interplay of thermodynamic free energy and viscous dissipation. Time-resolved synchrotron x-ray microtomography documents water filling at pore scale. Spontaneous imbibition in yarns is characterized by a series of fast pore-filling events separated by long periods of low flux. Four-dimensional imaging allows the extraction of interface areas at the boundaries between water, air, and polymer and the calculation of free-energy evolution. It is found that the waiting periods correspond to quasistable water configurations of almost vanishing free-energy gradient. The distributions of pore filling event sizes and waiting times spread over several orders of magnitude, resulting in the pronounced stepwise uptake dynamics.

18.
ACS Appl Mater Interfaces ; 13(18): 22031-22039, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33939416

ABSTRACT

When dealing with reactions of a liquid reactant and a solid catalyst, macroreactors with vigorous stirring equipment may be dangerous and cause wastage of energy. Reducing the diffusion distance and promoting reactants to reach the catalyst surface for efficient reaction remain the key challenges. Here, inspired by capillary-driven water motion in plants, we propose to implement a self-driven multiplex reaction (SMR) in nanocatalyst-loaded microchannels. Unlike the classical capillary rise, the droplet in SMR has variable pressure difference, leading to tunable flow velocity for controlling the reaction rate without any auxiliary equipment. The SMR in microchannels contributes to an increase in the reaction rate by more than 2 orders of magnitude compared to that in macroreactors. Specifically, this strategy reduces the reaction volume by 170 times, the catalyst usage by about 12 times, and the energy consumption by 50 times. This apparatus with a small volume and less catalyst content promises to provide an efficient strategy for the precise manipulation of chemical reactions.

19.
Phys Rev E ; 103(2-1): 023311, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33736117

ABSTRACT

Drying of colloidal suspension towards the exploitation of the resultant nanoparticle deposition has been applied in different research and engineering fields. Recent experimental studies have shown that neck-based thermal structure (NTS) by colloidal nanoparticle deposition between microsize filler particle configuration (FPC) can significantly enhance vertical heat conduction in innovative three-dimensional chip stacks [Brunschwiler et al., J. Electron. Packag. 138, 041009 (2016)10.1115/1.4034927]. However, an in-depth understanding of the mechanisms of colloidal liquid drying, neck formation, and their influence on heat conduction is still lacking. In this paper, using the lattice Boltzmann method, we model neck formation in FPCs and evaluate the thermal performances of resultant NTSs. The colloidal liquid is found drying continuously from the periphery of the microstructure to its center with a decreasing drying rate. With drying, more necks of smaller size are formed between adjacent filler particles, while fewer necks of larger size are formed between filler particle and the top/bottom plate of the FPCs. The necks, forming critical throats between the filler particles, are found to improve the heat flux significantly, leading to an overall heat conduction enhancement of 2.4 times. In addition, the neck count, size, and distribution as well as the thermal performance of NTSs are found to be similar for three different FPCs at a constant filler particle volume fraction. Our simulation results on neck formation and thermal performances of NTSs are in good agreement with experimental results. This demonstrates that the current lattice Boltzmann models are accurate in modeling drying of colloidal suspension and heat conduction in microporous structures, and have high potentials to study other problems such as surface coating, salt transport, salt crystallization, and food preserving.

20.
Carbohydr Polym ; 258: 117682, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33593555

ABSTRACT

Crystalline cellulose, the most abundant natural polymer on earth, features exceptional physical and mechanical properties. Using atomistic simulation, this study reports the mechanical behavior of cellulose-cellulose nanocrystal hydrophilic interface and systematically examines the impact of loading direction, interfacial moisture, misalignment and surface types. The density, orientation or distribution of interfacial hydrogen bonds are shown to explain the series of findings presented here, including stick-slip behavior, stiffness recovery after an irreversible slip, direction-dependent behavior and weakening induced by hydration or misalignment. Correlation analysis shows that, regardless of the various loading conditions, the interfacial stress, shear velocity and interaction energy are strongly correlated with the density of interfacial hydrogen bonds, which quantitatively supports the central role of hydrogen bonding. Based on this correlation, the friction force rendered by a single hydrogen bond is inferred to be fHB ∼1.3 E-10 N under a shearing speed of 1 m s-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...