Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 13(5): e1005531, 2017 05.
Article in English | MEDLINE | ID: mdl-28475588

ABSTRACT

Synonymous rare codons are considered to be sub-optimal for gene expression because they are translated more slowly than common codons. Yet surprisingly, many protein coding sequences include large clusters of synonymous rare codons. Rare codons at the 5' terminus of coding sequences have been shown to increase translational efficiency. Although a general functional role for synonymous rare codons farther within coding sequences has not yet been established, several recent reports have identified rare-to-common synonymous codon substitutions that impair folding of the encoded protein. Here we test the hypothesis that although the usage frequencies of synonymous codons change from organism to organism, codon rarity will be conserved at specific positions in a set of homologous coding sequences, for example to tune translation rate without altering a protein sequence. Such conservation of rarity-rather than specific codon identity-could coordinate co-translational folding of the encoded protein. We demonstrate that many rare codon cluster positions are indeed conserved within homologous coding sequences across diverse eukaryotic, bacterial, and archaeal species, suggesting they result from positive selection and have a functional role. Most conserved rare codon clusters occur within rather than between conserved protein domains, challenging the view that their primary function is to facilitate co-translational folding after synthesis of an autonomous structural unit. Instead, many conserved rare codon clusters separate smaller protein structural motifs within structural domains. These smaller motifs typically fold faster than an entire domain, on a time scale more consistent with translation rate modulation by synonymous codon usage. While proteins with conserved rare codon clusters are structurally and functionally diverse, they are enriched in functions associated with organism growth and development, suggesting an important role for synonymous codon usage in organism physiology. The identification of conserved rare codon clusters advances our understanding of distinct, functional roles for otherwise synonymous codons and enables experimental testing of the impact of synonymous codon usage on the production of functional proteins.


Subject(s)
Amino Acid Sequence/genetics , Codon/genetics , Conserved Sequence/genetics , Open Reading Frames/genetics , RNA, Messenger/genetics , Computational Biology , Models, Molecular , RNA, Messenger/metabolism
2.
Genome Announc ; 2(6)2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25502681

ABSTRACT

A draft genome sequence of Cystobacter violaceus strain Cb vi76, which produces the eukaryotic protein synthesis inhibitor gephyronic acid, has been obtained. The genome contains numerous predicted secondary metabolite clusters, including the gephyronic acid biosynthetic pathway. This genome will contribute to the investigation of secondary metabolism in other Cystobacter strains.

3.
Mol Ecol ; 23(11): 2686-98, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24766086

ABSTRACT

Local adaptation of populations could preclude or slow range expansions in response to changing climate, particularly when dispersal is limited. To investigate the differential responses of populations to changing climatic conditions, we exposed poleward peripheral and central populations of two Lepidoptera to reciprocal, common-garden climatic conditions and compared their whole-transcriptome expression. We found evidence of simple population differentiation in both species, and in the species with previously identified population structure and phenotypic local adaptation, we found several hundred genes that responded in a synchronized and localized fashion. These genes were primarily involved in energy metabolism and oxidative stress, and expression levels were most divergent between populations in the same environment in which we previously detected divergence for metabolism. We found no localized genes in the species with less population structure and for which no local adaptation was previously detected. These results challenge the assumption that species are functionally similar across their ranges and poleward peripheral populations are preadapted to warmer conditions. Rather, some taxa deserve population-level consideration when predicting the effects of climate change because they respond in genetically based, distinctive ways to changing conditions.


Subject(s)
Acclimatization/genetics , Climate Change , Genetics, Population , Lepidoptera/genetics , Animals , Female , Gene Expression , Lepidoptera/classification , Molecular Sequence Data , North America , Population Dynamics , Species Specificity , Temperature , Transcriptome
4.
J Nat Prod ; 76(12): 2269-76, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24298873

ABSTRACT

Gephyronic acid, a cytostatic polyketide produced by the myxobacterium Cystobacter violaceus Cb vi76, exhibits potent and selective eukaryotic protein synthesis inhibition. Next-generation sequencing of the C. violaceus genome revealed five type I polyketide synthases and post-PKS tailoring enzymes including an O-methyltransferase and a cytochrome P450 monooxygenase. Seven methyltransferase (MT) domains embedded within the PKS subunits were found to install the methyl branches throughout the gephyronic acid skeleton. A rare loading domain from the GNAT superfamily also contains an embedded MT domain that catalyzes the in situ production of an isobutyryl starter unit. Phylogenetic analysis identified new motifs that distinguish MT domains located in PKS pathways with in cis acyltransferase (AT) domains from MT domains located in PKS pathways with trans AT enzymes. The identification of the gene cluster sets the stage for the generation of a heterologous expression system, which will allow further investigation of selective eukaryotic protein synthesis inhibitors through the generation of gephyronic acid analogues.


Subject(s)
Acyltransferases/metabolism , Cytochrome P-450 Enzyme System/metabolism , Methyltransferases/metabolism , Myxococcales/chemistry , Polyketide Synthases/metabolism , S-Adenosylmethionine/metabolism , Acyltransferases/genetics , Biosynthetic Pathways/genetics , Escherichia coli/growth & development , Fatty Acids, Monounsaturated/chemistry , Fatty Acids, Monounsaturated/isolation & purification , Fatty Acids, Monounsaturated/pharmacology , Methylation , Methyltransferases/genetics , Molecular Structure , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Multigene Family , Myxococcales/genetics , Phylogeny , Polyketide Synthases/genetics , Protein Structure, Tertiary , Sequence Analysis
5.
BMC Genomics ; 11: 310, 2010 May 17.
Article in English | MEDLINE | ID: mdl-20478048

ABSTRACT

BACKGROUND: Several recent studies have demonstrated the use of Roche 454 sequencing technology for de novo transcriptome analysis. Low error rates and high coverage also allow for effective SNP discovery and genetic diversity estimates. However, genetically diverse datasets, such as those sourced from natural populations, pose challenges for assembly programs and subsequent analysis. Further, estimating the effectiveness of transcript discovery using Roche 454 transcriptome data is still a difficult task. RESULTS: Using the Roche 454 FLX Titanium platform, we sequenced and assembled larval transcriptomes for two butterfly species: the Propertius duskywing, Erynnis propertius (Lepidoptera: Hesperiidae) and the Anise swallowtail, Papilio zelicaon (Lepidoptera: Papilionidae). The Expressed Sequence Tags (ESTs) generated represent a diverse sample drawn from multiple populations, developmental stages, and stress treatments. Despite this diversity, > 95% of the ESTs assembled into long (> 714 bp on average) and highly covered (> 9.6x on average) contigs. To estimate the effectiveness of transcript discovery, we compared the number of bases in the hit region of unigenes (contigs and singletons) to the length of the best match silkworm (Bombyx mori) protein--this "ortholog hit ratio" gives a close estimate on the amount of the transcript discovered relative to a model lepidopteran genome. For each species, we tested two assembly programs and two parameter sets; although CAP3 is commonly used for such data, the assemblies produced by Celera Assembler with modified parameters were chosen over those produced by CAP3 based on contig and singleton counts as well as ortholog hit ratio analysis. In the final assemblies, 1,413 E. propertius and 1,940 P. zelicaon unigenes had a ratio > 0.8; 2,866 E. propertius and 4,015 P. zelicaon unigenes had a ratio > 0.5. CONCLUSIONS: Ultimately, these assemblies and SNP data will be used to generate microarrays for ecoinformatics examining climate change tolerance of different natural populations. These studies will benefit from high quality assemblies with few singletons (less than 26% of bases for each assembled transcriptome are present in unassembled singleton ESTs) and effective transcript discovery (over 6,500 of our putative orthologs cover at least 50% of the corresponding model silkworm gene).


Subject(s)
Gene Expression Profiling/methods , Lepidoptera/genetics , Sequence Analysis, DNA/methods , Animals , Bombyx/genetics , Cluster Analysis , Female , Genes, Insect/genetics , Male , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...