Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 11474, 2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37455269

ABSTRACT

The fast individuation and modeling of faults responsible for large earthquakes are fundamental for understanding the evolution of potentially destructive seismic sequences. This is even more challenging in case of buried thrusts located in offshore areas, like those hosting the 9 November 2022 Ml 5.7 (Mw 5.5) and ML 5.2 earthquakes that nucleated along the Apennines compressional front, offshore the northern Adriatic Sea. Available on- and offshore (from hydrocarbon platforms) geodetic observations and seismological data provide robust constraints on the rupture of a 15 km long, ca. 24° SSW-dipping fault patch, consistent with seismic reflection data. Stress increase along unruptured portion of the activated thrust front suggests the potential activation of longer portions of the thrust with higher magnitude earthquake and larger surface faulting. This unpleasant scenario needs to be further investigated, also considering their tsunamigenic potential and possible impact on onshore and offshore human communities and infrastructures.

2.
Sci Rep ; 7(1): 16403, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29180662

ABSTRACT

Aftershocks number decay through time, depending on several parameters peculiar to each seismogenic regions, including mainshock magnitude, crustal rheology, and stress changes along the fault. However, the exact role of these parameters in controlling the duration of the aftershock sequence is still unknown. Here, using two methodologies, we show that the tectonic setting primarily controls the duration of aftershocks. On average and for a given mainshock magnitude (1) aftershock sequences are longer and (2) the number of earthquakes is greater in extensional tectonic settings than in contractional ones. We interpret this difference as related to the different type of energy dissipated during earthquakes. In detail, (1) a joint effect of gravitational forces and pure elastic stress release governs extensional earthquakes, whereas (2) pure elastic stress release controls contractional earthquakes. Accordingly, normal faults operate in favour of gravity, preserving inertia for a longer period and seismicity lasts until gravitational equilibrium is reached. Vice versa, thrusts act against gravity, exhaust their inertia faster and the elastic energy dissipation is buffered by the gravitational force. Hence, for seismic sequences of comparable magnitude and rheological parameters, aftershocks last longer in extensional settings because gravity favours the collapse of the hangingwall volumes.

3.
Sci Rep ; 5: 12110, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26169163

ABSTRACT

Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors.

SELECTION OF CITATIONS
SEARCH DETAIL
...