Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Membranes (Basel) ; 13(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37233583

ABSTRACT

The polymer electrolyte membrane and its contact with electrodes has a significant effect on the performance of fuel and electrolysis cells but the choice of commercially available membranes is limited. In this study, membranes for direct methanol fuel cells (DMFCs) were made by ultrasonic spray deposition from commercial Nafion solution; the effect of the drying temperature and presence of high boiling solvents on the membrane properties was then analyzed. When choosing suitable conditions, membranes with similar conductivity, water uptake, and higher crystallinity than comparable commercial membranes can be obtained. These show similar or superior performance in DMFC operation compared to commercial Nafion 115. Furthermore, they exhibit low permeability for hydrogen, which makes them attractive for electrolysis or hydrogen fuel cells. The findings from our work will allow for the adjustment of membrane properties to the specific requirements of fuel cells or water electrolysis, as well as the inclusion of additional functional components for composite membranes.

2.
Anal Chem ; 94(44): 15223-15230, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36302263

ABSTRACT

Combining spectroscopic techniques with electrochemistry is a promising strategy, as it allows the detailed investigation of the species that are consumed and produced by the reaction in real time. However, as with any in situ coupling technique, the junction between NMR and electrochemistry presents some challenges, notably the distortion of NMR signals due to the placement of electrodes close to or within the detection region. In this work, miniaturized electrodes made of carbon fiber paper were developed and later modified with platinum. Platinum decoration by cathodic deposition was chosen, as platinum is a prominent element in electrocatalysis, able to catalyze a large variety of reactions. To evaluate the efficiency of this electrochemical system, the oxidation of ascorbic acid was used as a model reaction. It was observed that the electrodes caused substantial signal distortion when placed within the detection region (full width at half-maximum equal to 1.46 Hz), whereas no distortion was observed when the electrodes were placed 1 mm above the detection region (full width at half-maximum equal to 0.95 Hz). With this system, it was also possible to monitor the magnetoelectrolysis effect, caused by the interaction of the magnetic field with the flowing ions, leading to a doubling of the ascorbic acid oxidation rate, compared to the reaction performed without a magnetic field. In addition to its low cost and simplicity in preparation, the developed electrode system allows the electrode surface to be easily modified with other suitable catalysts.


Subject(s)
Ascorbic Acid , Platinum , Microelectrodes , Carbon Fiber , Platinum/chemistry , Electrodes , Electrochemistry , Oxidation-Reduction , Carbon/chemistry
3.
ACS Omega ; 7(6): 4991-5000, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35187316

ABSTRACT

The in situ coupling between electrochemistry and spectrometric techniques can help in the identification and quantification of the compounds produced and consumed during electrochemical reactions. The combination of electrochemistry with nuclear magnetic resonance is quite attractive in this respect, but it has some challenges to be addressed, namely, the reduction in the quality of the NMR signal when the metallic electrodes are placed close to or in the detection region. Since NMR is not a passive technique, the convective effect of the magnetic force (magnetoelectrolysis), which acts by mixing the solution and increasing the mass transport, has to be considered. In seeking to solve the aforementioned problems, we developed a system of miniaturized electrodes inside a 5 mm NMR tube (outer diameter); the working and counter electrodes were prepared with a mixture of graphite powder and epoxy resin. To investigate the performance of the electrodes, the benzoquinone reduction to hydroquinone and the isopropanol oxidation to acetone were monitored. To monitor the alcohol oxidation reaction, the composite graphite-epoxy electrode (CGEE) surface was modified through platinization. The electrode was efficient for in situ monitoring of the aforementioned reactions, when positioned 1 mm above the detection region of the NMR spectrometer. The magnetoelectrolysis effect acts by stirring the solution and increases the reaction rate of the reduction of benzoquinone, because this reaction is limited by mass transport, while no effect on the reaction rate is observed for the isopropanol oxidation reaction.

4.
ACS Appl Mater Interfaces ; 13(14): 16182-16196, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33798332

ABSTRACT

The cell performance and durability of polymer electrolyte membrane (PEM) water electrolyzers are limited by the surface passivation of titanium-based porous transport layers (PTLs). In order to ensure stable performance profiles over time, large amounts (≥1 mg·cm-2) of noble metals (Au, Pt, Ir) are most widely used to coat titanium-based PTLs. However, their high cost is still a major obstacle toward commercialization and widespread application. In this paper, we assess different loadings of iridium, ranging from 0.005 to 0.05 mg·cm-2 in titanium PTLs, that consequently affect the investment costs of PEM water electrolyzers. Concerning a reduction in the precious metal costs, we found that Ir as a protective layer with a loading of 0.025 mg·cm-2 on the PTLs would be sufficient to achieve the same cell performance as PTLs with a higher Ir loading. This Ir loading is a 40-fold reduction over the Au or Pt loading typically used for protective layers in current commercial PEM water electrolyzers. We show that the Ir protective layer here not only decreases the Ohmic resistance significantly, which is the largest part of the gain in performance, but moreover, the oxygen evolution reaction activity of the iridium layer makes it promising as a cost-effective catalyst layer. Our work also confirms that the proper construction of a multifunctional interface between a membrane and a PTL indeed plays a crucial role in guaranteeing the superior performance and efficiency of electrochemical devices.

5.
ACS Appl Mater Interfaces ; 13(11): 13576-13585, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33706507

ABSTRACT

Low-cost, highly active, and highly stable catalysts are desired for the generation of hydrogen and oxygen using water electrolyzers. To enhance the kinetics of the oxygen evolution reaction in an acidic medium, it is of paramount importance to redesign iridium electrocatalysts into novel structures with organized morphology and high surface area. Here, we report on the designing of a well-defined and highly active hollow nanoframe based on iridium. The synthesis strategy was to control the shape of nickel nanostructures on which iridium nanoparticles will grow. After the growth of iridium on the surface, the next step was to etch the nickel core to form the NiIr hollow nanoframe. The etching procedure was found to be significant in controlling the hydroxide species on the iridium surface and by that affecting the performance. The catalytic performance of the NiIr hollow nanoframe was studied for oxygen evolution reaction and shows 29 times increased iridium mass activity compared to commercially available iridium-based catalysts. Our study provides novel insights to control the fabrication of iridium-shaped catalysts using 3d transition metal as a template and via a facile etching step to steer the formation of hydroxide species on the surface. These findings shall aid the community to finally create stable iridium alloys for polymer electrolyte membrane water electrolyzers, and the strategy is also useful for many other electrochemical devices such as batteries, fuel cells, sensors, and solar organic cells.

6.
Materials (Basel) ; 13(6)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32213913

ABSTRACT

Electrochemical energy conversion and storage is key for the use of regenerative energies at large scale. A thorough understanding of the individual components, such as the ion conducting membrane and the electrode layers, can be obtained with scattering techniques on atomic to molecular length scales. The largely heterogeneous electrode layers of High-Temperature Polymer Electrolyte Fuel Cells are studied in this work with small- and wide-angle neutron scattering at the same time with the iMATERIA diffractometer at the spallation neutron source at J-PARC, opening a view on structural properties on atomic to mesoscopic length scales. Recent results on the proton mobility from the same samples measured with backscattering spectroscopy are put into relation with the structural findings.

7.
J Magn Reson ; 312: 106692, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32062585

ABSTRACT

Electrochemical reactions have become increasingly important in a large number of processes and applications. The use of NMR (Nuclear Magnetic Resonance) techniques to follow in situ electrochemistry processes has been gaining increasing attention from the scientific community because they allow the identification and quantification of the products and reagents, whereas electrochemistry measurements alone are not able to do so. However, when an electrochemical reaction is performed in situ the reaction rate can be increased by action of the Lorentz force, which is equal to the cross product between the current density and the magnetic field applied. This phenomenon is called the magnetohydrodynamic (MHD) effect. Although this process is beneficial because it accelerates the reaction, it needs to be well understood and taken into account during the in situ electrochemical measurements. The MHD effect is based on increased mass transfer, which is shown by in situ MRI velocimetry here. Images had to be acquired in a rapid manner since current was not pulsed. Significant velocities in a plane parallel to the electrodes alongside with complex flow patterns were detected.

8.
Annu Rev Chem Biomol Eng ; 10: 219-239, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31173524

ABSTRACT

Hydrogen is an important part of any discussion on sustainability and reduction in emissions across major energy sectors. In addition to being a feedstock and process gas for many industrial processes, hydrogen is emerging as a fuel alternative for transportation applications. Renewable sources of hydrogen are therefore required to increase in capacity. Low-temperature electrolysis of water is currently the most mature method for carbon-free hydrogen generation and is reaching relevant scales to impact the energy landscape. However, costs still need to be reduced to be economical with traditional hydrogen sources. Operating cost reductions are enabled by the recent availability of low-cost sources of renewable energy, and the potential exists for a large reduction in capital cost withmaterial and manufacturing optimization. This article focuses on the current status and development needs by component for the low-temperature electrolysis options.


Subject(s)
Electrolysis/methods , Hydrogen/chemistry , Renewable Energy , Anion Exchange Resins/chemistry , Catalysis , Electrolysis/instrumentation , Hydroxides/chemistry , Membranes, Artificial , Porosity , Potassium Compounds/chemistry , Temperature
9.
Adv Mater ; 28(10): 1940-9, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26689722

ABSTRACT

Electrochemical devices such as fuel cells, electrolyzers, lithium-air batteries, and pseudocapacitors are expected to play a major role in energy conversion/storage in the near future. Here, it is demonstrated how desirable bulk metallic glass compositions can be obtained using a combinatorial approach and it is shown that these alloys can serve as a platform technology for a wide variety of electrochemical applications through several surface modification techniques.

11.
ACS Nano ; 6(2): 1347-56, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22236330

ABSTRACT

Translating the unique properties of individual single-walled carbon nanotubes (SWNTs) to the macroscale while simultaneously incorporating additional functionalities into composites has been stymied by inadequate assembly methods. Here we describe a technique for developing multifunctional SWNT/polymer composite thin films that provides a fundamental engineering basis to bridge the gap between their nano- and macroscale properties. Selected polymers are infiltrated into a Mayer rod coated conductive SWNT network to fabricate solar cell transparent conductive electrodes (TCEs), fuel cell membrane electrode assemblies (MEAs), and lithium ion battery electrodes. Our TCEs have an outstanding optoelectronic figure of merit σ(dc)/σ(ac) of 19.4 and roughness of 3.8 nm yet are also mechanically robust enough to withstand delamination, a step toward scratch resistance necessary for flexible electronics. Our MEAs show platinum utilization as high as 1550 mW/mg(Pt), demonstrating our technique's ability to integrate ionic conductivity of the polymer with electrical conductivity of the SWNTs at the Pt surface. Our battery anodes, which show reversible capacity of ∼850 mAh/g after 15 cycles, demonstrate the integration of electrode and separator to simplify device architecture and decrease overall weight. Each of these applications demonstrates our technique's ability to maintain the conductivity of SWNT networks and their dispersion within a polymer matrix while concurrently optimizing key complementary properties of the composite. Here, we lay the foundation for the assembly of nanotubes and nanostructured components (rods, wires, particles, etc.) into macroscopic multifunctional materials using a low-cost and scalable solution-based processing technique.

12.
ACS Nano ; 5(4): 2979-83, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21370891

ABSTRACT

Electrochemical devices have the potential to pose powerful solutions in addressing rising energy demands and counteracting environmental problems. However, currently, these devices suffer from meager performance due to poor efficiency and durability of the catalysts. These suboptimal characteristics have hampered widespread commercialization. Here we report on Pt(57.5)Cu(14.7)Ni(5.3)P(22.5) bulk metallic glass (Pt-BMG) nanowires, whose novel architecture and outstanding durability circumvent the performance problems of electrochemical devices. We fabricate Pt-BMG nanowires using a facile and scalable nanoimprinting approach to create dealloyed high surface area nanowire catalysts with high conductivity and activity for methanol and ethanol oxidation. After 1000 cycles, these nanowires maintain 96% of their performance-2.4 times as much as conventional Pt/C catalysts. Their properties make them ideal candidates for widespread commercial use such as for energy conversion/storage and sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...