Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Pest Manag Sci ; 79(9): 3300-3311, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37103894

ABSTRACT

BACKGROUND: Net blotch (NB), caused by Pyrenophora teres f. teres (Ptt), is an important disease of barley worldwide. NB control is commonly achieved through the use of fungicide mixtures including strobilurins, triazoles and carboxamides. Succinate dehydrogenase inhibitors (SDHI) are important components of fungicide management programs of barley diseases. However, during the last growing seasons in Argentina, barley fields sprayed with mixtures containing SDHI fungicides have shown failures in NB control. Here, we report the isolation and characterization of Argentine Ptt strains resistant to SDHI fungicides. RESULTS: Compared against a sensitive (wild-type) reference strain collected in 2008, all 21 Ptt isolates collected in 2021 exhibited resistance to pydiflumetofen and fluxapyroxad both in vitro and in vivo. Concordantly, all of them presented target-site mutations in any of the sdhB, sdhC and sdhD genes. Although the mutations detected have been previously reported in other parts of the world, this study documents for the first time the occurrence of double mutations in the same Ptt isolate. Specifically, the double mutation sdhC-N75S + sdhD-D145G confers high resistance to SDHI fungicides, while the double mutations sdhB-H277Y + sdhC-N75S and sdhB-H277Y + sdhC-H134R confer moderate levels of resistance in Ptt. CONCLUSIONS: SDHI-resistance in Argentine Ptt populations is expected to increase. These findings emphasize the urgent need to perform a wider survey and a more frequent monitoring of SDHI sensitivity of Ptt populations and to develop and implement effective antiresistance tactics. © 2023 Society of Chemical Industry.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/pharmacology , Succinate Dehydrogenase/genetics , Drug Resistance, Fungal/genetics , Plant Diseases , Mutation
3.
Biomolecules ; 12(9)2022 09 10.
Article in English | MEDLINE | ID: mdl-36139113

ABSTRACT

Araujia hortorum is a perennial vining plant species native to South America. It was introduced into many countries for ornamental and medicinal purposes as well as for its edible fruits, but it has become highly invasive, generating severe environmental problems. Biological control using bioherbicides and natural compounds is an interesting control option. The pathogenic fungus Ascochyta araujiae, isolated from infected leaves of A. hortorum, could be considered as a potential biocontrol agent. Its ability to produce bioactive metabolites was studied. The organic extract of the fungal culture filtrates showed interesting phytotoxic activities consisting of clearly visible necrotic symptoms (0.5-1 cm in diameter) in the punctured leaves. Thus, it was purified; this afforded three main metabolites. These were chemically and biologically characterised: one proved to be a new pentasubstituted dihydrofuro[3,2-b]furan-2(5H)-one, named araufuranone (1). The others were the already known fungal metabolites neovasinin and 2,4-dihydroxy-6-hydoxymethylbenzaldehyde (2 and 3). The structure of araufuranone was determined using spectroscopic methods (essentially 1D and 2D 1H and 13C NMR and HR ESIMS spectra); its relative configuration was assigned by a NOESY spectrum. To the best of our knowledge, araufuranone is the first example of a naturally occurring compound showing that carbon skeleton. Assayed by a puncture, araufuranone proved to be weakly active on the leaves of Diplotaxis sp. and Sonchus sp.; the other two metabolites were even less toxic. Tested on cress, compounds 2 and 3 were able to partially inhibit rootlet elongation whereas araufuranone was almost inactive.


Subject(s)
Ascomycota , Toxins, Biological , Ascomycota/chemistry , Carbon/metabolism , Furans , Molecular Structure , Plant Leaves/chemistry , Toxins, Biological/metabolism
4.
J Agric Food Chem ; 70(32): 9834-9844, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35925677

ABSTRACT

A bioactive disubstituted nonenolide, named truncatenolide, was produced by Colletotrichum truncatum, which was collected from infected tissues of soybean showing anthracnose symptoms in Argentina. This is a devastating disease that drastically reduces the yield of soybean production in the world. The fungus also produced a new trisubstituted oct-2-en-4-one, named truncatenone, and the well-known tyrosol and N-acetyltyramine. Truncatenolide and truncatenone were characterized by spectroscopic (essentially one-dimensional (1D) and two-dimensional (2D) 1H and 13C NMR and HR ESIMS) and chemical methods as (5E,7R,10R)-7-hydroxy-10-methyl-3,4,7,8,9,10-hexahydro-2H-oxecin-2-one and (Z)-6-hydroxy-3,5-dimethyloct-2-en-4-one, respectively. The geometry of the double bond of truncatenolide was assigned by the value of olefinic proton coupling constant and that of truncatenone by the correlation observed in the corresponding NOESY spectrum. The relative configuration of each stereogenic center was assigned with the help of 13C chemical shift and 1H-1H scalar coupling DFT calculations, while the absolute configuration assignment of truncatenolide was performed by electronic circular dichroism (ECD). When tested on soybean seeds, truncatenolide showed the strongest phytotoxic activity. Tyrosol and N-acetyltyramine also showed phytotoxicity to a lesser extent, while truncatenone weakly stimulated the growth of the seed root in comparison to the control. When assayed against Macrophomina phaseolina and Cercospora nicotianae, other severe pathogens of soybean, truncatenolide showed significant activity against M. phaseolina and total inhibition of C. nicotianae. Thus, some other fungal nonenolides and their derivatives were assayed for their antifungal activity against both fungi in comparison with truncatenolide. Pinolidoxin showed to a less extent antifungal activity against both fungi, while modiolide A selectively and totally inhibited only the growth of C. nicotianae. The SAR results and the potential of truncatenolide, modiolide A, and pinolidoxin as biofungicides were also discussed.


Subject(s)
Colletotrichum , Glycine max , Antifungal Agents , Argentina , Plant Diseases/microbiology , Glycine max/microbiology
5.
J Nat Prod ; 84(2): 459-465, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33492968

ABSTRACT

Two new penta- and tetrasubstituted cyclopentenones, named phaseocyclopentenones A and B (1 and 2), together with guignardone A (3), were isolated from Macrophomina phaseolina cultures. The phytopathogenic fungus was isolated from infected soybean tissues showing charcoal rot symptoms in Argentina. Charcoal rot is a devastating disease considering that soybean is one of the main legumes cultivated in the world. Phaseocyclopentenones A and B were characterized by 1D and 2D 1H and 13C NMR spectroscopic and HRESIMS spectrometric data and chemical methods as 4-benzoyl-3,4,5-trihydroxy-2-phenylcyclopent-2-enone and 3,5-dihydroxy-2,4-diphenylcyclopent-2-enone, respectively. The relative configuration of phaseocyclopentenones A and B was assigned by 1H and NOESY NMR methods, while their absolute configurations were assigned by electronic circular dichroism methods. When assayed on a nonhost plant (Solanum lycopersicum L.) by the leaf puncture assay, phaseocyclopentenones A and B and guignardone A showed phytotoxic activity, while only 1 and 2 were toxic when tested on cuttings of the same plant. No phytotoxicity or antifungal activity was detected for the three compounds on the host plant soybean (Glycine max L.) and against some of its fungal pathogens, namely, Cercospora nicotianae and Colletotrichum truncatum, also isolated from infected soybean plants in Argentina.


Subject(s)
Ascomycota/chemistry , Cyclopentanes/chemistry , Glycine max/microbiology , Plant Diseases/microbiology , Toxins, Biological/chemistry , Argentina , Ascomycota/pathogenicity , Molecular Structure , Plant Roots/microbiology , Secondary Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...