Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Am J Forensic Med Pathol ; 45(2): 151-156, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38739896

ABSTRACT

ABSTRACT: Autopsy followed by histopathological examination is foundational in clinical and forensic medicine for discovering and understanding pathological changes in disease, their underlying processes, and cause of death. Imaging technology has become increasingly important for advancing clinical research and practice, given its noninvasive, in vivo and ex vivo applicability. Medical and forensic autopsy can benefit greatly from advances in imaging technology that lead toward minimally invasive, whole-brain virtual autopsy. Brain autopsy followed by histopathological examination is still the hallmark for understanding disease and a fundamental modus operandi in forensic pathology and forensic medicine, despite the fact that its practice has become progressively less frequent in medical settings. This situation is especially relevant with respect to new diseases such as COVID-19 caused by the SARS-CoV-2 virus, for which our neuroanatomical knowledge is sparse. In this narrative review, we show that ad hoc clinical autopsies and histopathological analyses combined with neuroimaging of the principal circumventricular organs are critical to gaining insight into the reconstruction of the pathophysiological mechanisms and the explanation of cause of death (ie, atrium mortis) related to the cardiovascular effects of SARS-CoV-2 infection in forensic and clinical medicine.


Subject(s)
COVID-19 , Humans , COVID-19/pathology , COVID-19/diagnostic imaging , Neuroimaging/methods , Autopsy/methods , Brain/pathology , Brain/diagnostic imaging , SARS-CoV-2 , Forensic Pathology/methods , Clinical Relevance
2.
Front Cell Neurosci ; 9: 17, 2015.
Article in English | MEDLINE | ID: mdl-25705176

ABSTRACT

Compromised secretory function of choroid plexus (CP) and defective cerebrospinal fluid (CSF) production, along with accumulation of beta-amyloid (Aß) peptides at the blood-CSF barrier (BCSFB), contribute to complications of Alzheimer's disease (AD). The AD triple transgenic mouse model (3xTg-AD) at 16 month-old mimics critical hallmarks of the human disease: ß-amyloid (Aß) plaques and neurofibrillary tangles (NFT) with a temporal- and regional- specific profile. Currently, little is known about transport and metabolic responses by CP to the disrupted homeostasis of CNS Aß in AD. This study analyzed the effects of highly-expressed AD-linked human transgenes (APP, PS1 and tau) on lateral ventricle CP function. Confocal imaging and immunohistochemistry revealed an increase only of Aß42 isoform in epithelial cytosol and in stroma surrounding choroidal capillaries; this buildup may reflect insufficient clearance transport from CSF to blood. Still, there was increased expression, presumably compensatory, of the choroidal Aß transporters: the low density lipoprotein receptor-related protein 1 (LRP1) and the receptor for advanced glycation end product (RAGE). A thickening of the epithelial basal membrane and greater collagen-IV deposition occurred around capillaries in CP, probably curtailing solute exchanges. Moreover, there was attenuated expression of epithelial aquaporin-1 and transthyretin (TTR) protein compared to Non-Tg mice. Collectively these findings indicate CP dysfunction hypothetically linked to increasing Aß burden resulting in less efficient ion transport, concurrently with reduced production of CSF (less sink action on brain Aß) and diminished secretion of TTR (less neuroprotection against cortical Aß toxicity). The putative effects of a disabled CP-CSF system on CNS functions are discussed in the context of AD.

SELECTION OF CITATIONS
SEARCH DETAIL
...