Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 13653, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32788600

ABSTRACT

There is a variety of cases in nature when the action-reaction symmetry is broken. In particular, suitable conditions for this are realized in colloidal suspensions and complex plasmas. Since the first theories and simulations of the nonreciprocal effective interactions between microparticles in complex plasmas were published in 1995-1996, there have been hundreds of studies in the theoretical development of this theme. However, despite such a rich theoretical background, one of the important unsolved problems is a direct experimental determination of the nonreciprocal interparticle interaction forces. Here, we studied experimentally in detail the forces of the nonreciprocal effective interaction between microparticles suspended a radio-frequency produced plasma sheath. For this purpose, an experimental method based on an analysis of the spectral density of random processes in an open dissipative two-particle system was developed. In contrast to previous investigations, the proposed method takes into account random and dissipative processes in the system, does not require a special design of the experimental setup and any external perturbations, pre-measurements of external fields and any assumptions about the type of interaction. We found that even small charge changes of one particle, caused by its thermal motion in a wake field of another particle, can lead to a significant change in the effective (measurable) interaction between the particles.

2.
Phys Rev E ; 96(1-1): 011201, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29347228

ABSTRACT

Spontaneous formation of spinning pairs of particles, or torsions, is studied in a single-layer complex plasma crystal by reducing the discharge power at constant neutral gas pressure. At higher gas pressures, torsions spontaneously form below a certain power threshold. Further reduction of the discharge power leads to the formation of multiple torsions. However, at lower gas pressures the torsion formation is preceded by mode-coupling instability (MCI). The crystal dynamics are studied with the help of the fluctuation spectra of crystal particles' in-plane velocities. Surprisingly, the spectra of the crystal with torsions and MCI are rather similar and contain hot spots at similar locations on the (k,ω) plane, despite very different appearances of the respective particle trajectories. The torsion rotation speed is close (slightly below) to the maximum frequency of the in-plane compressional mode. When multiple torsions form, their rotation speeds are distributed in a narrow range slightly below the maximum frequency.

SELECTION OF CITATIONS
SEARCH DETAIL
...