Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 9436, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29930304

ABSTRACT

This study is a comparison of the efficiency of three technologies used for Y chromosome capture and the next-generation sequencing (NGS) technologies applied for determining its whole sequence. Our main findings disclose that streptavidin-biotin magnetic particle-based capture methodology offers better and a deeper sequence coverage for Y chromosome capture, compared to chromosome sorting and microdissection procedures. Moreover, this methodology is less time consuming and the most selective for capturing only Y chromosomal material, in contrast with other methodologies that result in considerable background material from other, non-targeted chromosomes. NGS results compared between two platforms, NextSeq 500 and SOLID 5500xl, produce the same coverage results. This is the first study to explore a methodological comparison of Y chromosome capture and genetic analysis. Our results indicate an improved strategy for Y chromosome research with applications in several scientific fields where this chromosome plays an important role, such as forensics, medical sciences, molecular anthropology and cancer sciences.


Subject(s)
Chromosomes, Human, Y/genetics , Flow Cytometry/methods , High-Throughput Nucleotide Sequencing/methods , Laser Capture Microdissection/methods , Sequence Analysis, DNA/methods , Cells, Cultured , Chromosomes, Human, Y/chemistry , Humans , Male
2.
Nucleic Acids Res ; 36(Web Server issue): W523-8, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18515346

ABSTRACT

In the last few years, advances in high-throughput technologies are generating large amounts of biological data that require analysis and interpretation. Nonnegative matrix factorization (NMF) has been established as a very effective method to reveal information about the complex latent relationships in experimental data sets. Using this method as part of the exploratory data analysis, workflow would certainly help in the process of interpreting and understanding the complex biology mechanisms that are underlying experimental data. We have developed bioNMF, a web-based tool that implements the NMF methodology in different analysis contexts to support some of the most important reported applications in biology. This online tool provides a user-friendly interface, combined with a computational efficient parallel implementation of the NMF methods to explore the data in different analysis scenarios. In addition to the online access, bioNMF also provides the same functionality included in the website as a public web services interface, enabling users with more computer expertise to launch jobs into bioNMF server from their own scripts and workflows. bioNMF application is freely available at http://bionmf.dacya.ucm.es.


Subject(s)
Cluster Analysis , Computational Biology , Software , Algorithms , Gene Expression Profiling , Internet
SELECTION OF CITATIONS
SEARCH DETAIL
...