Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 11(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36429254

ABSTRACT

Antimicrobial-resistant foodborne microorganisms may be transmitted from food producing animals to humans through the consumption of meat products. In this study, meat that was derived from farmed pigs and wild boars was analyzed and compared. Escherichia coli (E. coli) were isolated and tested phenotypically and genotypically for their resistance to quinolones, aminoglycosides and carbapenems. The co-presence of AMR-associated plasmid genes was also evaluated. A quinolone AMR phenotypic analysis showed 41.9% and 36.1% of resistant E. coli derived from pork and wild boars meat, respectively. A resistance to aminoglycosides was detected in the 6.6% of E. coli that was isolated from pork and in 1.8% of the wild boar meat isolates. No resistant profiles were detected for the carbapenems. The quinolone resistance genes were found in 58.3% of the phenotypically resistant pork E. coli and in 17.5% of the wild boar, thus showing low genotypic confirmation rates. The co-presence of the plasmid-related genes was observed only for the quinolones and aminoglycosides, but not for the carbapenems. Wild boar E. coli were the most capable to perform biofilm production when they were compared to pork E. coli. In conclusion, the contamination of pork and wild boar meat by AMR microorganisms could be a threat for consumers, especially if biofilm-producing strains colonize the surfaces and equipment that are used in the food industry.

2.
Ital J Food Saf ; 11(2): 9972, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35795463

ABSTRACT

The European Food Safety Authority and European Centre of Disease Prevention and Control antimicrobial resistance report published in 2021 shows increasing levels of antimicrobial resistance in Salmonella against antibiotics of choice for human salmonellosis (s-lactams and fluoroquinolones). The aim of the study was to follow the evolution of resistance against some Critical Important Antimicrobials in Salmonella isolates from fresh pork collected in Emilia-Romagna region, northern Italy, over two decades. Emilia-Romagna region is characterized by production of well-known pork derived products, as Parma Ham. The samples were collected in three different periods, ranging from 2000 to 2003, 2012 to 2016 and 2018 to 2021. After serotyping, the isolates were phenotypically tested for resistance to three classes of antibiotics: s-lactams, fluoroquinolones and polymyxins. End-point polymerase chain reaction (PCR) and PCRReal Time were used for genotypical analyses. The phenotypical resistance to s-lactams and fluoroquinolones were clearly increasing when comparing the results obtained from isolates collected in the first period (16.7% and 16.7%, respectively) with those of the third period (29.7% and 32.4%, respectively). On the contrary, the resistance to colistin decreased from 33.3% to 5.4%. Genotypically, the 71.4% and 83.3% of the strains harboured s-lactams and fluoroquinolones genes, respectively, while colistin resistance genes were not detected in the phenotypically resistant strains.

3.
Microorganisms ; 9(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494307

ABSTRACT

A global increase in Escherichia coli (E. coli) resistant to cephalosporins (extended-spectrum ß-lactamases (ESßLs) and AmpC ß-lactamases) has been recorded in the last 20 years. Similarly, several studies have reported the spread of colistin resistance in Enterobacteriaceae isolated from food and the environment. The aim of the present study was to evaluate the prevalence of ESßL, AmpC and colistin-resistant E. coli isolated from pork and wild boar meat products in the Emilia Romagna region (North Italy). The isolates were analysed phenotypically (considering both resistant and intermediate profiles) and genotypically. The prevalence of genotypically confirmed ESßL and AmpC E. coli was higher in pork meat products (ESßL = 11.1% vs. AmpC = 0.3%) compared to wild boar meat (ESßL = 6.5% vs. AmpC = 0%). Intermediate profiles for cefotaxime (CTX) and ceftazidime (CAZ) were genotypically confirmed as ESßL in pork meat isolates but not for wild boar. Four E. coli from wild boar meat were resistant to colistin but did not harbour the mcr-1 gene. E. coli isolated from wild boar meat seem to show aspecific antimicrobial resistance mechanisms for cephalosporins and colistin. The prevalence of resistant isolates found in wild boar is less alarming than in pork from farmed domestic pigs. However, the potential risk to consumers of these meat products will require further investigations.

SELECTION OF CITATIONS
SEARCH DETAIL
...