Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Ocul Pharmacol Ther ; 39(8): 509-518, 2023 10.
Article in English | MEDLINE | ID: mdl-37172141

ABSTRACT

Purpose: There is increasing interest in nonpharmacologic approaches to protect retinal ganglion cells (RGCs) after injury and enhance the efficacy of therapeutic molecules. Accumulating evidence demonstrates neuroprotection by the high-fat low-carbohydrate ketogenic diet (KD) in humans and animal models of neurologic diseases. However, no studies to date have examined whether the KD protects RGCs and promotes axonal regrowth after traumatic injury to the optic nerve (ON) or whether it increases efficacy of experimental proregenerative molecules. In this study, we investigated whether the KD promoted RGC survival and axonal regeneration after ON injury in the presence and absence of neuroprotective Wnt3a ligand. Methods: Adult mice were placed on a KD or control diet before ON crush injury and remained on the diet until the end of the experiment. Nutritional ketosis was confirmed by measuring serum beta-hydroxybutyrate levels. Mice were intravitreally injected with Wnt3a ligand or phosphate-buffered saline (PBS), and RGC survival, function, axonal regeneration, and inflammatory responses were measured. Results: Mice fed the KD showed increased RGC survival and reduced inflammatory cells in PBS-injected mice. Also, mice fed the KD had increased RGC functional responses but not increased RGC numbers in the presence of Wnt3a, indicating that the KD did not enhance the prosurvival effect of Wnt3a. The KD did not promote axonal regeneration in the presence or absence of Wnt3a. Conclusions: The KD has a complex protective effect after ON injury and cotreatment with Wnt3a. This work sets the foundation for studies identifying underlying molecular mechanisms.


Subject(s)
Diet, Ketogenic , Optic Nerve Injuries , Humans , Mice , Animals , Optic Nerve Injuries/drug therapy , Retinal Ganglion Cells , Ligands , Nerve Regeneration/physiology , Cell Survival , Disease Models, Animal
2.
BMC Ophthalmol ; 22(1): 502, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539722

ABSTRACT

BACKGROUND: Optic nerve trauma caused by crush injury is frequently used for investigating experimental treatments that protect retinal ganglion cells (RGCs) and induce axonal regrowth. Retaining outer retinal light responses is essential for therapeutic rescue of RGCs after injury. However, whether optic nerve crush also damages the structure or function of photoreceptors has not been systematically investigated. In this study, we investigated whether outer retinal thickness and visual function are altered by optic nerve crush in the mouse. METHODS: Wildtype mice underwent optic nerve crush and intravitreal injection of a control solution in one eye with the fellow eye remaining uninjured. Two weeks after injury, the thickness of the ganglion cell region (GCL to IPL) and photoreceptor layer (bottom of the OPL to top of the RPE) were measured using OCT. Retinal function was assessed using flash ERGs. Immunodetection of RGCs was performed on retinal cryosections and RGCs and ONL nuclei rows were counted. Multiple comparison analyses were conducted using Analysis of Variance (ANOVA) with Tukey's post hoc test and P values less than 0.05 were considered statistically significant. RESULTS: Optic nerve crush injury induced RGC death as expected, demonstrated by thinning of the ganglion cell region and RGC loss. In contrast, outer retinal thickness, photopic and scotopic a-wave and b-wave amplitudes and photoreceptor nuclei counts, were equivalent between injured and uninjured eyes. CONCLUSIONS: Secondary degeneration of the outer retina was not detected after optic nerve injury in the presence of significant RGC death, suggesting that the retina has the capacity to compartmentalize damage. These findings also indicate that experimental treatments to preserve the GCL and rescue vision using this optic nerve injury model would not require additional strategies to preserve the ONL.


Subject(s)
Crush Injuries , Optic Nerve Injuries , Mice , Animals , Retina , Retinal Ganglion Cells , Optic Nerve , Crush Injuries/complications , Crush Injuries/metabolism , Nerve Crush , Disease Models, Animal
3.
J Neuroinflammation ; 19(1): 216, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36064575

ABSTRACT

BACKGROUND: Retinal degenerative diseases are a group of conditions characterized by photoreceptor death and vision loss. Excessive inflammation and microglial activation contribute to the pathology of retinal degenerations and a major focus in the field is identifying more effective anti-inflammatory therapeutic strategies that promote photoreceptor survival. A major challenge to developing anti-inflammatory treatments is to selectively suppress detrimental inflammation while maintaining beneficial inflammatory responses. We recently demonstrated that endogenous levels of the IL-27 cytokine were upregulated in association with an experimental treatment that increased photoreceptor survival. IL-27 is a pleiotropic cytokine that regulates tissue reactions to infection, neuronal disease and tumors by inducing anti-apoptotic and anti-inflammatory genes and suppressing pro-inflammatory genes. IL-27 is neuroprotective in the brain, but its function during retinal degeneration has not been investigated. In this study, we investigated the effect of IL-27 in the rd10 mouse model of inherited photoreceptor degeneration. METHODS: Male and female rd10 mice were randomly divided into experimental (IL-27) and control (saline) groups and intravitreally injected at age post-natal day (P) 18. Retina function was analyzed by electroretinograms (ERGs), visual acuity by optomotor assay, photoreceptor death by TdT-mediated dUTP nick-end labeling (TUNEL) assay, microglia/macrophage were detected by immunodetection of IBA1 and inflammatory mediators by cytoplex and QPCR analysis. The distribution of IL-27 in the retina was determined by immunohistochemistry on retina cross-sections and primary Muller glia cultures. RESULTS: We demonstrate that recombinant IL-27 decreased photoreceptor death, increased retinal function and reduced inflammation in the rd10 mouse model of retinal degeneration. Furthermore, IL-27 injections led to lower levels of the pro-inflammatory proteins Ccl22, IL-18 and IL-12. IL-27 expression was localized to Muller glia and IL-27 receptors to microglia, which are key cell types that regulate photoreceptor survival. CONCLUSION: Our results identify for the first time anti-inflammatory and neuroprotective activities of IL-27 in a genetic model of retinal degeneration. These findings provide new insight into the therapeutic potential of anti-inflammatory cytokines as a treatment for degenerative diseases of the retina.


Subject(s)
Interleukin-27 , Retinal Degeneration , Animals , Anti-Inflammatory Agents/therapeutic use , Cytokines , Disease Models, Animal , Female , Inflammation/drug therapy , Male , Mice , Retinal Degeneration/pathology
4.
eNeuro ; 9(4)2022.
Article in English | MEDLINE | ID: mdl-35914928

ABSTRACT

Canonical and noncanonical Wnt signaling pathways are essential for development and maintenance of the CNS. Whereas the roles of canonical Wnt pathways in neuronal survival and axonal regeneration in adult CNS have been described, the functions of noncanonical Wnt pathways are not well understood. Furthermore, the role of noncanonical Wnt ligands in the adult retina has not been investigated. Noncanonical Wnt signaling shares receptors with canonical Wnt ligands but functions through calcium and c-Jun N-terminal kinase (JNK) signaling pathways. Noncanonical ligands, such as the prototypic ligand Wnt5a, have varying effects in the developing CNS, including inhibiting or promoting axonal growth. To identify a role for noncanonical Wnt signaling in the developed retina after injury, we characterized the effect of Wnt5a on neurite outgrowth in cultured retinal ganglion cell (RGC) neurons and on axonal regeneration in the injured optic nerve in the mouse. Endogenous Wnt5a was upregulated after injury and exogenous Wnt5a significantly enhanced neurite growth of primary RGCs and led to extensive axonal regeneration after optic nerve crush (ONC) injury. Wnt5a also significantly increased RGC survival. Furthermore, Wnt5a induced phosphorylation of CamKII and JNK and induced expression of their downstream pathway components. Therefore, these results demonstrate for the first time that Wnt5a promotes axonal growth and protects RGCs in the adult retina.


Subject(s)
Axons , Optic Nerve Injuries , Animals , Axons/metabolism , Mice , Nerve Regeneration/physiology , Optic Nerve Injuries/metabolism , Retina/metabolism , Wnt Signaling Pathway
5.
J Cell Mol Med ; 25(20): 9533-9542, 2021 10.
Article in English | MEDLINE | ID: mdl-34562309

ABSTRACT

Progressive photoreceptor death occurs in blinding diseases such as retinitis pigmentosa. Myeloid differentiation primary response protein 88 (MyD88) is a central adaptor protein for innate immune system Toll-like receptors (TLR) and induces cytokine secretion during retinal disease. We recently demonstrated that inhibiting MyD88 in mouse models of retinal degeneration led to increased photoreceptor survival, which was associated with altered cytokines and increased neuroprotective microglia. However, the identity of additional molecular changes associated with MyD88 inhibitor-induced neuroprotection is not known. In this study, we used isobaric tags for relative and absolute quantification (iTRAQ) labelling followed by LC-MS/MS for quantitative proteomic analysis on the rd10 mouse model of retinal degeneration to identify protein pathways changed by MyD88 inhibition. Quantitative proteomics using iTRAQ LC-MS/MS is a high-throughput method ideal for providing insight into molecular pathways during disease and experimental treatments. Forty-two proteins were differentially expressed in retinas from mice treated with MyD88 inhibitor compared with control. Notably, increased expression of multiple crystallins and chaperones that respond to cellular stress and have anti-apoptotic properties was identified in the MyD88-inhibited mice. These data suggest that inhibiting MyD88 enhances chaperone-mediated retinal protection pathways. Therefore, this study provides insight into molecular events contributing to photoreceptor protection from modulating inflammation.


Subject(s)
Myeloid Differentiation Factor 88/antagonists & inhibitors , Neuroprotection , Proteome , Proteomics , Retinal Degeneration/etiology , Retinal Degeneration/metabolism , Animals , Biomarkers , Chromatography, High Pressure Liquid , Computational Biology/methods , Disease Models, Animal , Disease Susceptibility , Female , Gene Expression Regulation , Gene Ontology , Male , Mass Spectrometry , Mice , Photoreceptor Cells/metabolism , Photoreceptor Cells/pathology , Protein Interaction Mapping/methods , Proteomics/methods , Retinal Degeneration/pathology , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...