Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 224(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-34137891

ABSTRACT

Hibernation is characterized by depression of many physiological processes. To determine if this state is reversible in a non-food caching species, we fed hibernating grizzly bears (Ursus arctos horribilis) dextrose for 10 days to replace 53% or 100% of the estimated minimum daily energetic cost of hibernation. Feeding caused serum concentrations of glycerol and ketones (ß-hydroxybutyrate) to return to active season levels irrespective of the amount of glucose fed. By contrast, free fatty acids (FFAs) and indices of metabolic rate, such as general activity, heart rate, strength of heart rate circadian rhythm, and insulin sensitivity were restored to approximately 50% of active season levels. Body temperature was unaffected by feeding. To determine the contribution of adipose to the metabolic effects observed after glucose feeding, we cultured bear adipocytes collected at the beginning and end of the feeding and performed metabolic flux analysis. We found a ∼33% increase in energy metabolism after feeding. Moreover, basal metabolism before feeding was 40% lower in hibernation cells compared with fed cells or active cells cultured at 37°C, thereby confirming the temperature independence of metabolic rate. The partial depression of circulating FFAs with feeding likely explains the incomplete restoration of insulin sensitivity and other metabolic parameters in hibernating bears. Further depression of metabolic function is likely to be an active process. Together, the results provide a highly controlled model to examine the relationship between nutrient availability and metabolism on the hibernation phenotype in bears.


Subject(s)
Hibernation , Ursidae , Adipose Tissue , Animals , Phenotype , Seasons
2.
J Exp Biol ; 224(Pt 6)2021 03 30.
Article in English | MEDLINE | ID: mdl-33785520

ABSTRACT

Animal movements are major determinants of energy expenditure and ultimately the cost-benefit of landscape use. Thus, we sought to understand those costs and how grizzly bears (Ursus arctos) move in mountainous landscapes. We trained captive grizzly bears to walk on a horizontal treadmill and up and down 10% and 20% slopes. The cost of moving upslope increased linearly with speed and slope angle, and this was more costly than moving horizontally. The cost of downslope travel at slower speeds was greater than the cost of traveling horizontally but appeared to decrease at higher speeds. The most efficient walking speed that minimized cost per unit distance was 1.19±0.11 m s-1 However, grizzly bears fitted with GPS collars in the Greater Yellowstone Ecosystem moved at an average velocity of 0.61±0.28 m s-1 and preferred to travel on near-horizontal slopes at twice their occurrence. When traveling uphill or downhill, grizzly bears chose paths across all slopes that were ∼54% less steep and costly than the maximum available slope. The net costs (J kg-1 m-1) of moving horizontally and uphill were the same for grizzly bears, humans and digitigrade carnivores, but those costs were 46% higher than movement costs for ungulates. These movement costs and characteristics of landscape use determined using captive and wild grizzly bears were used to understand the strategies that grizzly bears use for preying on large ungulates and the similarities in travel between people and grizzly bears that might affect the risk of encountering each other on shared landscapes.


Subject(s)
Ursidae , Animals , Ecosystem , Energy Metabolism , Humans , Movement , Walking
3.
J Exp Biol ; 221(Pt 12)2018 06 19.
Article in English | MEDLINE | ID: mdl-29921569

ABSTRACT

Ursids are the largest mammals to retain a plantigrade posture. This primitive posture has been proposed to result in reduced locomotor speed and economy relative to digitigrade and unguligrade species, particularly at high speeds. Previous energetics research on polar bears (Ursus maritimus) found locomotor costs were more than double predictions for similarly sized quadrupedal mammals, which could be a result of their plantigrade posture or due to adaptations to their Arctic marine existence. To evaluate whether polar bears are representative of terrestrial ursids or distinctly uneconomical walkers, this study measured the mass-specific metabolism, overall dynamic body acceleration, and gait kinematics of polar bears and grizzly bears (Ursus arctos) trained to rest and walk on a treadmill. At routine walking speeds, we found polar bears and grizzly bears exhibited similar costs of locomotion and gait kinematics, but differing measures of overall dynamic body acceleration. Minimum cost of transport while walking in the two species (2.21 J kg-1 m-1) was comparable to predictions for similarly sized quadrupedal mammals, but these costs doubled (4.42 J kg-1 m-1) at speeds ≥5.4 km h-1 Similar to humans, another large plantigrade mammal, bears appear to exhibit a greater economy while moving at slow speeds.


Subject(s)
Energy Metabolism , Locomotion/physiology , Posture/physiology , Ursidae/physiology , Acceleration , Animals , Biomechanical Phenomena , Body Weight , Female , Gait/physiology , Ice Cover , Male , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...