Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 476: 135042, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944996

ABSTRACT

Tires are a major source of synthetic and natural rubber particles, metals and organic compounds, in which several compounds are linked to negative environmental impact. Recent advances in material technology, coupled with focus on sustainability, have introduced a new range of tires, sold as "green, sustainable, and eco-friendly". Although these "green" tires may have lower impact on the environment on a global scale, there is no current knowledge about the chemical composition of "green" tires, and whether they are more eco-friendly when considering the release of tire wear particles or tire-associated chemicals. Here we have investigated the chemical composition of nine "green" vehicle tires, one "green" bike tire and seven "conventional" vehicle tires. No significant difference was found between "green" and "conventional" tires tested in this study. For N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), the average concentration in "green" tires were higher (16 ± 7.8 µg/mg) compared to "conventional" tires (8.7 ± 4.5 µg/mg). The relationship between metals, selected organic compounds and rubbers demonstrated large variation across brands, and lower variability between tires grouped according to their seasonal use. This study indicates that more work is needed to understand how the shift towards sustainable tires might change the chemical composition of tires.

2.
Toxics ; 11(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38133418

ABSTRACT

Lakes are essentially interlinked to humans as they provide water for drinking, agriculture, industrial and domestic purposes. The upsurge of plastic usage, its persistence, and potential detrimental effects on organisms cause impacts on the trophic food web of freshwater ecosystems; this issue, however, still needs to be explored. Zooplankton worldwide is commonly studied as an indicator of environmental risk in aquatic ecosystems for several pollutants. The aim of the review is to link the existing knowledge of microplastic pollution in zooplankton to assess the potential risks linked to these organisms which are at the first level of the lacustrine trophic web. A database search was conducted through the main databases to gather the relevant literature over the course of time. The sensitivity of zooplankton organisms is evident from laboratory studies, whereas several knowledge gaps exist in the understanding of mechanisms causing toxicity. This review also highlights insufficient data on field studies hampering the understanding of the pollution extent in lakes, as well as unclear trends on ecosystem-level cascading effects of microplastics (MPs) and mechanisms of toxicity (especially in combination with other pollutants). Therefore, this review provides insight into understanding the overlooked issues of microplastic in lake ecosystems to gain an accurate ecological risk assessment.

3.
J Hazard Mater ; 452: 131330, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37004438

ABSTRACT

The interaction between environmental plastic and trace elements is an issue of concern. Understanding their interaction mechanisms is key to evaluate the potential threats for the environment. To this regard, consolidating confidence in extraction protocols can help in understanding the amount of different species present on plastic surface, as well as the potential mobility of trace elements present inside the plastic matrix (e.g., additives). Here we tested the efficacy of different reagents to mimic the elemental phases bonded to meso- and microplastic in the environment, in relation to the grade of ageing and the polymer composition. Results showed that a relatively high portion of trace elements is bonded in a weak phase and that other phases abundant in other matrices (e.g., oxides and bonded to organic matter) are only present to a limited degree in the plastic samples. The comparison of different sample types highlighted the important role of plastic ageing in governing interactions with trace elements, while the polymer composition has a limited influence on this process. Finally, the future steps toward a tailored extraction scheme for environmental plastic are proposed.

4.
Water Res ; 204: 117637, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34536685

ABSTRACT

Plastic and microplastic pollution is an environmental and societal concern. The interaction of plastic with organic chemicals in the environment has attracted scientific interest. New evidences have highlighted an unexpectedly high affinity of environmental plastics also for metal ions. The degree and typology of plastic ageing (including from mechanical, UV and biological degradations) appear as a pivotal factor determining such an interaction. These earlier evidences recently opened a new research avenue in the plastic pollution area. This review is the first to organize and critically discuss knowledge developed so far. Results from field and laboratory studies of metal accumulation on plastic are presented and the environmental factors most likely to control such an interaction are discussed. On the light of this knowledge, a generalist conceptual model useful for building hypotheses on the mechanisms at stake and directing future studies was elaborated and presented here. Furthermore, all available data on the thermodynamics of the plastic-metal interaction obtained from laboratory experiments are inventoried and discussed here, highlighting methodological and technical challenges that can potentially affect cross-comparability of data and their relevance for environmental settings. Finally, insights and recommendations on experimental approaches and analytical techniques that can help overtaking current limitations and knowledge gaps are proposed.


Subject(s)
Trace Elements , Water Pollutants, Chemical , Environmental Monitoring , Microplastics , Plastics , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...