Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Microbiol ; 2022: 7878830, 2022.
Article in English | MEDLINE | ID: mdl-35996633

ABSTRACT

An increase in global energy demand has caused oil prices to reach record levels in recent times. High oil prices together with concerns over CO2 emissions have resulted in renewed interest in renewable energy. Nowadays, ethanol is the principal renewable biofuel. However, the industrial need for increased productivity, wider substrate range utilization, and the production of novel compounds leads to renewed interest in further extending the use of current industrial strains by exploiting the immense, and still unknown, potential of natural yeast strains. This review seeks to answer the following questions: (a) which characteristics should S. cerevisiae have for the current production of first- and second-generation ethanol? (b) Why are alcohol-tolerance and thermo-tolerance characteristics required? (c) Which genes are related to these characteristics? (d) What are the advances that can be achieved with the isolation of new organisms from the environment?

2.
Biotechnol Biofuels ; 6(1): 23, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23414668

ABSTRACT

BACKGROUND: The use of lignocellulosic constituents in biotechnological processes requires a selective separation of the main fractions (cellulose, hemicellulose and lignin). During diluted acid hydrolysis for hemicellulose extraction, several toxic compounds are formed by the degradation of sugars and lignin, which have ability to inhibit microbial metabolism. Thus, the use of a detoxification step represents an important aspect to be considered for the improvement of fermentation processes from hydrolysates. In this paper, we evaluated the application of Advanced Oxidative Processes (AOPs) for the detoxification of rice straw hemicellulosic hydrolysate with the goal of improving ethanol bioproduction by Pichia stipitis yeast. Aiming to reduce the toxicity of the hemicellulosic hydrolysate, different treatment conditions were analyzed. The treatments were carried out according to a Taguchi L16 orthogonal array to evaluate the influence of Fe+2, H2O2, UV, O3 and pH on the concentration of aromatic compounds and the fermentative process. RESULTS: The results showed that the AOPs were able to remove aromatic compounds (furan and phenolic compounds derived from lignin) without affecting the sugar concentration in the hydrolysate. Ozonation in alkaline medium (pH 8) in the presence of H2O2 (treatment A3) or UV radiation (treatment A5) were the most effective for hydrolysate detoxification and had a positive effect on increasing the yeast fermentability of rice straw hemicellulose hydrolysate. Under these conditions, the higher removal of total phenols (above 40%), low molecular weight phenolic compounds (above 95%) and furans (above 52%) were observed. In addition, the ethanol volumetric productivity by P. stipitis was increased in approximately twice in relation the untreated hydrolysate. CONCLUSION: These results demonstrate that AOPs are a promising methods to reduce toxicity and improve the fermentability of lignocellulosic hydrolysates.

SELECTION OF CITATIONS
SEARCH DETAIL
...