Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Polym Mater ; 6(6): 3207-3221, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38544968

ABSTRACT

This work describes first a 5-stack direct methanol fuel cell (DMFC) based on poly(3,4-ethylenedioxythiophene)-modified paper (PEDOT/PB-DMFC), which acts as an energy source and biosensor, coupled to an electrochromic cell (EC). It is autonomous and monitors the biosensor response by color change, as appropriate for point-of-care (POC) applications. In detail, DMFC strips were developed from square Whatman paper, and the EC was made on baking paper treated with polydimethylsiloxane (PDMS). The PEDOT/PB-DMFCs operate in a passive mode with a few microliters of diluted methanol. The biosensor layer was obtained on the anode ink (a composite of EDOT, oxidized multiwalled carbon nanotubes, and carbon black with platinum and ruthenium) by electropolymerizing 3,4-ethylenedioxythiophene (EDOT), in situ, in the presence of L1CAM. Each PEDOT/PB-DMFC single cell generates a voltage in the range of 0.3-0.35 V depending on the cell, and a five-cell stack delivers a 1.5-1.6 V voltage range when fed with 0.5 M methanol. The fabricated PEDOT/PB-DMFC/biosensor was calibrated against L1CAM, showing linear responses from 1.0 × 10-12 to 1.0 × 10-8 M with a detection limit of 1.17 × 10-13 M (single cell mode). When the EC was connected to the PEDOT/PB-DMFC device, a color gradient was observed. Overall, this work opens horizons to the use of biosensors even in places with energy scarcity and offers an alternative to reducing the current energy demand.

2.
Talanta ; 257: 124340, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36809692

ABSTRACT

An early diagnosis is the gold standard for cancer survival. Biosensors have proven their effectiveness in monitoring cancer biomarkers but are still limited to a series of requirements. This work proposes an integrated power solution, with an autonomous and self-signaling biosensing device. The biorecognition element is produced in situ by molecular imprinting to detect sarcosine, a known biomarker for prostate cancer. The biosensor was assembled on the counter-electrode of a dye-sensitized solar cell (DSSC), simultaneously using EDOT and Pyrrole as monomers for the biomimetic process and the catalytic reduction of triiodide in the DSSC. After the rebinding assays, the hybrid DSSC/biosensor displayed a linear behavior when plotting the power conversion efficiency (PCE) and the charge transfer resistance (RCT) against the logarithm of the concentration of sarcosine. The latter obtained a sensitivity of 0.468 Ω/decade of sarcosine concentration, with a linear range between 1 ng/mL and 10 µg/mL, and a limit of detection of 0.32 ng/mL. When interfacing an electrochromic cell, consisting of a PEDOT-based material, with the hybrid device, a color gradient between 1 ng/mL and 10 µg/mL of sarcosine was observed. Thus, the device can be used anywhere with access to a light source, completely equipment-free, suitable for point-of-care analysis and capable of detecting sarcosine within a range of clinical interest.


Subject(s)
Biosensing Techniques , Sarcosine , Male , Humans , Sarcosine/analysis , Electrochemical Techniques , Limit of Detection , Biomarkers, Tumor , Coloring Agents
3.
Biosens Bioelectron ; 175: 112877, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33309216

ABSTRACT

This work describes an electrochemical sensor with a biomimetic plastic antibody film for carcinoembryonic antigen (CEA, an important biomarker in colorectal cancer), integrated in the electrical circuit of a direct methanol fuel cell (DMFC), working in passive mode and used herein as power supply and signal transducer. In detail, the sensing layer for CEA consisted of a Fluorine-doped Tin Oxide (FTO) conductive glass substrate - connected to the negative pole side of the DMFC - with a conductive poly (3,4-ethylenedioxythiophene) (PEDOT) layer and a polypyrrol (PPy) molecularly-imprinted polymer (MIP), assembled in-situ. This sensing element is then closed using a cover FTO-glass, hold in place with a clip, connected to the positive side of the DMFC. When compared with control DMFCs, the power curves of DMFC/Sensor integrated system showed decreased power values due to the MIP layer interfaced in the electrical circuit, also displaying high stability signals. The DMFC/Sensor was further calibrated at room temperature, in different medium (buffer, a synthetic physiological fluid model and Cormay® serum), showing linear responses over a wide concentration range, with a limit of detection of 0.08 ng/mL. The DMFC/Sensor presented sensitive data, with linear responses from 0.1 ng/mL to 100 µg/mL and operating well in the presence of human serum. Overall, the results obtained evidenced the possibility of using a DMFC as a transducing element in an electrochemical sensor, confirming the sensitive and selective readings of the bio (sensing) imprinted film. This integration paves the way towards fully autonomous electrochemical devices, in which the integration of the sensor inside the fuel cell may be a subsequent direction.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Carcinoembryonic Antigen , Electrochemical Techniques , Humans , Limit of Detection , Methanol , Transducers
4.
Biosens Bioelectron ; 140: 111320, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31150987

ABSTRACT

This work describes a novel and disruptive electrochemical biosensing device that is self-powered by light and self-signalled by an optical readout. Electrical energy requirements are ensured by a photovoltaic cell that is a dye sensitized solar cell (DSSC), in which one of the electrodes is the biosensing unit. The readout converts electrical energy into colour by an electrochromic cell and signals the concentration dependent event. This device was designed to target a cancer biomarker, cancinoembryonic antigen (CEA). In brief, the sensing unit was assembled on a conductive glass substrate with a highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) layer, using a molecularly-imprinted polymer of polypyrrol (PPy) as biorecognition element. This sensing unit acted as the counter electrode (CE) of the DSSC, generating a hybrid device with a maximum power conversion efficiency of 3.45% for a photoanode area of 0.7 cm2. The hybrid DSSC/biosensor had an electrical output that was CEA concentration dependent from 100 ng/mL to 100 µg/mL, with a limit detection of 0.14 ng/mL in human urine samples. The electrochromic cell consisted of a PEDOT-based material and showed a colour gradient change for CEA concentrations, ranging from 0.1 ng/mL to 100 µg/mL. Overall, this self-powered and self-signalled set-up is equipment free and particularly suitable for point-of-care analysis (POC), being able to screen CEA in real samples and differentiating critical concentrations for establishing a diagnosis. It holds the potential to provide clinical relevant data anywhere, in a fully independent manner.


Subject(s)
Biosensing Techniques/instrumentation , Carcinoembryonic Antigen/urine , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Electric Power Supplies , Electrochemical Techniques/instrumentation , Equipment Design , Humans , Limit of Detection , Molecular Imprinting , Polymers/chemistry , Pyrroles/chemistry , Solar Energy
SELECTION OF CITATIONS
SEARCH DETAIL
...