Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 929: 172602, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38653411

ABSTRACT

The metalloids arsenic (As) and antimony (Sb) belong to the pnictogen group of the periodic table; they share many characteristics, including their toxic and carcinogenic properties; and rank as high-priority pollutants in the United States and the European Union. Adsorption is one of the most effective techniques for removing both elements and desorption, for further reuse, is a part of the process to make adsorption more sustainable and feasible. This review presents the current state of knowledge on arsenic and antimony desorption from exhausted adsorbents previously used in water treatment, that has been reported in the literature. The application of different types of eluents to desorb As and Sb and their desorption performance are described. The regeneration of saturated adsorbents and adsorbate recovery techniques are outlined, including the fate of spent media and possible alternatives for waste disposal of exhausted materials. Future research directions are discussed, as well as current issues including the lack of environmental impact analysis of emerging adsorbents.

2.
J Hazard Mater ; 432: 128657, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35306409

ABSTRACT

The search for low-cost technologies for arsenic removal from water is in high demand due to its human toxicity, even at low concentrations. Adsorption can be a cost-effective water treatment technique if applied with inexpensive materials. Arsenic continuous removal by adsorption onto an alternative modified biosorbent, iron-coated cork granulates (ICG), was investigated in this work. Results showed that most experimental parameters of breakthrough curves (BTC) depend on flow rate, bed height, pH, and initial arsenic concentration. The temperature did not significantly affect arsenate removal in continuous mode; however, the adsorption capacity was affected in batch mode. The thermodynamic parameters suggest that the adsorption process is spontaneous and endothermic. The maximum adsorption capacity of ICG for As(V) removal at pH 3 was 4.2 ±â€¯0.3 mg g-1, calculated by Yan model fit (R2 = 0.981), and for As(III) at pH 9 was 1.6 ±â€¯0.2 mg g-1 (R2 = 0.994). ICG were able to treat As(V) from 100 µg L-1 to under 10 µg L-1 and 50 µg L-1 for 895 and 1633 bed volumes, and As(III) for 569 and 861 bed volumes, respectively, both at pH 7. The application of ICG in arsenic oxyanions remediation was found to be effective under various conditions.


Subject(s)
Arsenic , Water Pollutants, Chemical , Water Purification , Adsorption , Arsenic/analysis , Humans , Hydrogen-Ion Concentration , Iron , Kinetics , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...