Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(12): e0277749, 2022.
Article in English | MEDLINE | ID: mdl-36520800

ABSTRACT

Molecular biodiversity surveys have been increasingly applied in hyperdiverse tropical regions as an efficient tool for rapid species assessment of partially undiscovered fauna and flora. This is done by overcoming shortfalls in knowledge or availability of reproductive structures during the sampling period, which often represents a bottleneck for accurate specimens' identification. DNA sequencing technology is intensifying species discovery, and in combination with morphological identification, has been filling gaps in taxonomic knowledge and facilitating species inventories of tropical ecosystems. This study aimed to apply morphological taxonomy and DNA barcoding to assess the occurrence of Lamiaceae species in converted land-use systems (old-growth forest, jungle rubber, rubber, and oil palm) in Sumatra, Indonesia. In this species inventory, we detected 89 specimens of Lamiaceae from 18 species distributed in seven subfamilies from the Lamiaceae group. One third of the species identified in this study lacked sequences in the reference database for at least one of the markers used (matK, rbcL, and ITS). The three loci species-tree recovered a total of 12 out of the 18 species as monophyletic lineages and can be employed as a suitable approach for molecular species assignment in Lamiaceae. However, for taxa with a low level of interspecific genetic distance in the barcode regions used in this study, such as Vitex gamosepala Griff. and V. vestita Wall. ex Walp., or Callicarpa pentandra Roxb. and C. candidans (Burm.f.) Hochr., the use of traditional taxonomy remains indispensable. A change in species composition and decline in abundance is associated with an increase in land-use intensification at the family level (i.e., Lamiaceae), and this tendency might be constant across other plant families. For this reason, the maintenance of forest genetic resources needs to be considered for sustainable agricultural production, especially in hyperdiverse tropical regions. Additionally, with this change in species composition, accurate species identification throughout molecular assignments will become more important for conservation planning.


Subject(s)
Ecosystem , Lamiaceae , Indonesia , Rubber , Lamiaceae/genetics , Trees/genetics , DNA Barcoding, Taxonomic
2.
BMC Ecol Evol ; 22(1): 51, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35473550

ABSTRACT

BACKGROUND: Intense conversion of tropical forests into agricultural systems contributes to habitat loss and the decline of ecosystem functions. Plant-pollinator interactions buffer the process of forest fragmentation, ensuring gene flow across isolated patches of forests by pollen transfer. In this study, we identified the composition of pollen grains stored in pot-pollen of stingless bees, Tetragonula laeviceps, via dual-locus DNA metabarcoding (ITS2 and rbcL) and light microscopy, and compared the taxonomic coverage of pollen sampled in distinct land-use systems categorized in four levels of management intensity (forest, shrub, rubber, and oil palm) for landscape characterization. RESULTS: Plant composition differed significantly between DNA metabarcoding and light microscopy. The overlap in the plant families identified via light microscopy and DNA metabarcoding techniques was low and ranged from 22.6 to 27.8%. Taxonomic assignments showed a dominance of pollen from bee-pollinated plants, including oil-bearing crops such as the introduced species Elaeis guineensis (Arecaceae) as one of the predominant taxa in the pollen samples across all four land-use types. Native plant families Moraceae, Euphorbiaceae, and Cannabaceae appeared in high proportion in the analyzed pollen material. One-way ANOVA (p > 0.05), PERMANOVA (R² values range from 0.14003 to 0.17684, for all tests p-value > 0.5), and NMDS (stress values ranging from 0.1515 to 0.1859) indicated a lack of differentiation between the species composition and diversity of pollen type in the four distinct land-use types, supporting the influx of pollen from adjacent areas. CONCLUSIONS: Stingless bees collected pollen from a variety of agricultural crops, weeds, and wild plants. Plant composition detected at the family level from the pollen samples likely reflects the plant composition at the landscape level rather than the plot level. In our study, the plant diversity in pollen from colonies installed in land-use systems with distinct levels of forest transformation was highly homogeneous, reflecting a large influx of pollen transported by stingless bees through distinct land-use types. Dual-locus approach applied in metabarcoding studies and visual pollen identification showed great differences in the detection of the plant community, therefore a combination of both methods is recommended for performing biodiversity assessments via pollen identification.


Subject(s)
Microscopy , Rainforest , Animals , Bees/genetics , Biological Monitoring , Crops, Agricultural/genetics , DNA Barcoding, Taxonomic , Ecosystem , Indonesia , Pollen/genetics
3.
Plants (Basel) ; 8(11)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671512

ABSTRACT

DNA barcoding has been used as a universal tool for phylogenetic inferences and diversity assessments, especially in poorly studied species and regions. The aim of this study was to contrast morphological taxonomy and DNA barcoding, using the three frequently used markers matK, rbcL, and trnL-F, to assess the efficiency of DNA barcoding in the identification of dipterocarps in Sumatra, Indonesia. The chloroplast gene matK was the most polymorphic among these three markers with an average interspecific genetic distance of 0.020. The results of the molecular data were mostly in agreement with the morphological identification for the clades of Anthoshorea, Hopea, Richetia, Parashorea, and Anisoptera, nonetheless these markers were inefficient to resolve the relationships within the Rubroshorea group. The maximum likelihood and Bayesian inference phylogenies identified Shorea as a paraphyletic genus, Anthoshorea appeared as sister to Hopea, and Richetia was sister to Parashorea. A better discriminatory power among dipterocarp species provided by matK and observed in our study suggests that this marker has a higher evolutionary rate than the other two markers tested. However, a combination of several different barcoding markers is essential for reliable identification of the species at a lower taxonomic level.

SELECTION OF CITATIONS
SEARCH DETAIL
...