Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Food Microbiol ; 211: 38-43, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26162590

ABSTRACT

Heat processing is the most commonly used hurdle for inactivating microorganisms in fruit juices. However, this preservation method could interfere with the organoleptic characteristics of the product. Alternative methods have been proposed and bacteriocins such as nisin are potential candidates. However, the approval of bacteriocins as food additives is limited, especially in foods from vegetal origin. We aimed to verify the stability, the effect on physico-chemical properties, and the antimicrobial activity of nisin in different fruit juices. Nisin remained stable in fruit juices (cashew, soursop, peach, mango, passion fruit, orange, guava, and cupuassu) for at least 30 days at room or refrigerated temperature and did not cause any significant alterations in the physico-chemical characteristics of the juices. Besides, nisin favored the preservation of vitamin C content in juices. The antimicrobial activity of nisin was tested against Alicyclobacillus acidoterrestris, Bacillus cereus, Staphylococcus aureus and Listeria monocytogenes in cashew, soursop, peach, and mango juices. Nisin caused a 4-log reduction in viable cells of A. acidoterrestris in soursop, peach, and mango juices after 8h of incubation, and no viable cells were detected in cashew juices. After 24h of incubation in the presence of nisin, no viable cells were detected, independently of the juices. To S. aureus, at 24h of incubation in the presence of nisin, viable cells were only detected in mango juices, representing a 4-log decrease as compared with the control treatment. The number of viable cells of B. cereus at 24h of incubation in the presence of nisin represented at least a 4-log decrease compared to the control treatment. When the antimicrobial activity of nisin was tested against L. monocytogenes in cashew and soursop juices, no reduction in the viable cell number was observed compared to the control treatment after 24h of incubation. Viable cells were four and six times less than in the control treatment, in peach and mango juices respectively. The most sensitive microorganism to nisin was A. acidoterrestris and the least sensitive was L. monocytogenes. Still, a reduction of up to 90% of viable cells was observed in peach and mango juices inoculated with L. monocytogenes. These results indicate that the use of nisin could be an alternative in fruit juice processing.


Subject(s)
Anti-Bacterial Agents/chemistry , Food Preservatives/chemistry , Fruit and Vegetable Juices/analysis , Nisin/chemistry , Alicyclobacillus/drug effects , Anti-Bacterial Agents/pharmacology , Bacillus cereus/drug effects , Citrus sinensis/chemistry , Food Preservatives/pharmacology , Fruit and Vegetable Juices/microbiology , Listeria monocytogenes/drug effects , Mangifera/chemistry , Nisin/pharmacology , Staphylococcus aureus/drug effects
2.
Int J Food Microbiol ; 164(2-3): 135-40, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23673058

ABSTRACT

The aim of this study is to examine the effects of nisin-incorporated cellulose films on the physicochemical and microbiological qualities of minimally processed mangoes. The use of antimicrobial films did not affect the physicochemical characteristics of mangoes and showed antimicrobial activity against Staphylococcus aureus, Listeria monocytogenes, Alicyclobacillus acidoterrestris and Bacillus cereus. The mango slices were inoculated with S. aureus and L. monocytogenes (10(7)CFU/g), and the viable cell numbers remained at 10(5) and 10(6)CFU/g, respectively, after 12days. In samples packed with antimicrobial films, the viable number of L. monocytogenes cells was reduced below the detection level after 4days. After 6days, a reduction of six log units was observed for S. aureus. In conclusion, nisin showed antimicrobial activity in mangoes without interfering with the organoleptic characteristics of the fruit. This result suggests that nisin could potentially be used in active packing to improve the safety of minimally processed mangoes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Food Preservation , Food Preservatives/pharmacology , Mangifera/microbiology , Nisin/pharmacology , Bacterial Load , Cellulose , Food Handling , Food Microbiology , Listeria monocytogenes/drug effects , Listeria monocytogenes/physiology , Mangifera/chemistry , Mangifera/drug effects , Microbial Viability , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL