Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 13992, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38886475

ABSTRACT

Obesity is a complex disease associated with augmented risk of metabolic disorder development and cellular dysfunction in various species. The goal of the present study was to investigate the impacts of obesity on the metabolic health of old mares as well as test the ability of diet supplementation with either a complex blend of nutrients designed to improve equine metabolism and gastrointestinal health or L-carnitine alone to mitigate negative effects of obesity. Mares (n = 19, 17.9 ± 3.7 years) were placed into one of three group: normal-weight (NW, n = 6), obese (OB, n = 7) or obese fed a complex diet supplement for 12 weeks (OBD, n = 6). After 12 weeks and completion of sample collections, OB mares received L-carnitine alone for an additional 6 weeks. Obesity in mares was significantly associated with insulin dysregulation, reduced muscle mitochondrial function, and decreased skeletal muscle oxidative capacity with greater ROS production when compared to NW. Obese mares fed the complex diet supplement had better insulin sensivity, greater cell lipid metabolism, and higher muscle oxidative capacity with reduced ROS production than OB. L-carnitine supplementation alone did not significantly alter insulin signaling, but improved lipid metabolism and muscle oxidative capacity with reduced ROS. In conclusion, obesity is associated with insulin dysregulation and altered skeletal muscle metabolism in older mares. However, dietary interventions are an effective strategy to improve metabolic status and skeletal muscle mitochondrial function in older mares.


Subject(s)
Adiposity , Carnitine , Dietary Supplements , Insulin , Obesity , Animals , Horses , Female , Insulin/metabolism , Insulin/blood , Carnitine/metabolism , Carnitine/pharmacology , Obesity/metabolism , Obesity/diet therapy , Adiposity/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Lipid Metabolism/drug effects , Horse Diseases/metabolism , Horse Diseases/diet therapy , Horse Diseases/etiology , Insulin Resistance , Reactive Oxygen Species/metabolism
2.
Sci Rep ; 14(1): 7571, 2024 03 30.
Article in English | MEDLINE | ID: mdl-38555310

ABSTRACT

Obesity is a growing concern in human and equine populations, predisposing to metabolic pathologies and reproductive disturbances. Cellular lipid accumulation and mitochondrial dysfunction play an important role in the pathologic consequences of obesity, which may be mitigated by dietary interventions targeting these processes. We hypothesized that obesity in the mare promotes follicular lipid accumulation and altered mitochondrial function of oocytes and granulosa cells, potentially contributing to impaired fertility in this population. We also predicted that these effects could be mitigated by dietary supplementation with a combination of targeted nutrients to improve follicular cell metabolism. Twenty mares were grouped as: Normal Weight [NW, n = 6, body condition score (BCS) 5.7 ± 0.3], Obese (OB, n = 7, BCS 7.7 ± 0.2), and Obese Diet Supplemented (OBD, n = 7, BCS 7.7 ± 0.2), and fed specific feed regimens for ≥ 6 weeks before sampling. Granulosa cells, follicular fluid, and cumulus-oocyte complexes were collected from follicles ≥ 35 mm during estrus and after induction of maturation. Obesity promoted several mitochondrial metabolic disturbances in granulosa cells, reduced L-carnitine availability in the follicle, promoted lipid accumulation in cumulus cells and oocytes, and increased basal oocyte metabolism. Diet supplementation of a complex nutrient mixture mitigated most of the metabolic changes in the follicles of obese mares, resulting in parameters similar to NW mares. In conclusion, obesity disturbs the equine ovarian follicle by promoting lipid accumulation and altering mitochondrial function. These effects may be partially mitigated with targeted nutritional intervention, thereby potentially improving fertility outcomes in the obese female.


Subject(s)
Oocytes , Ovarian Follicle , Humans , Horses , Animals , Female , Ovarian Follicle/metabolism , Oocytes/metabolism , Follicular Fluid , Obesity/metabolism , Lipids , Dietary Supplements
3.
Andrology ; 12(4): 918-931, 2024 May.
Article in English | MEDLINE | ID: mdl-37608516

ABSTRACT

BACKGROUND: Phospholipase C zeta (PLCZ1) is considered the major sperm-borne oocyte activation factor. Cryopreserved stallion spermatozoa are commonly used for intracytoplasmic sperm injection (ICSI). However, plasma membrane damage and protein modifications caused by cryopreservation could impair sperm structure and function, leading to a reduction of PLCZ1 and oocyte activation after ICSI. OBJECTIVES: We compared membrane integrity and PLCZ1 abundance in populations for fresh, frozen, and refrozen stallion spermatozoa, either thawed and refrozen at room or low temperature; and examined the effect of relative PLCZ1 content on cleavage after ICSI. MATERIALS AND METHODS: Western blotting, ELISA, and immunofluorescence were conducted in stallion spermatozoa, freezing extenders, and detergent-extracted sperm fractions to detect and quantify PLCZ1. Retrospectively, PLCZ1 content and cleavage rate were analyzed. Fresh, frozen, and refrozen at room and low temperatures spermatozoa were evaluated for acrosomal and plasma membrane integrity and PLCZ1 content using flow cytometry. RESULTS: Western blotting, ELISA, and immunofluorescence revealed significant reduction of PLCZ1 in spermatozoa after cryopreservation and confirmed PLCZ1 detection in extenders. After detergent extraction, a PLCZ1-nonextractable fraction remained in the postacrosomal region of spermatozoa. Plasma membrane integrity was significantly reduced after freezing. Acrosomal and plasma membrane integrity were similar between frozen and refrozen samples at low temperature, but both were significantly higher than samples refrozen at room temperature. Acrosomal and plasma membrane integrity significantly correlated to PLCZ1 content. Percentages of PLCZ1-labeled spermatozoa and PLCZ1 content were reduced after freezing but not after refreezing. Relative content and localization of PLCZ1 were associated with cleavage rates after ICSI. DISCUSSION AND CONCLUSION: Sperm PLCZ1 content associates with cleavage rates after ICSI. Cryopreservation is detrimental to sperm plasma membrane integrity and PLCZ1 retention. However, refreezing did not result in additional PLCZ1 loss. Refreezing stallion spermatozoa at a low temperature resulted in better survival but did not improve PLCZ1 retention.


Subject(s)
Detergents , Semen Preservation , Male , Animals , Horses , Detergents/pharmacology , Detergents/metabolism , Retrospective Studies , Semen , Sperm Motility , Spermatozoa/metabolism , Cryopreservation/methods , Oocytes , Type C Phospholipases/metabolism , Cell Membrane , Semen Preservation/methods
4.
Vet Sci ; 10(12)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38133249

ABSTRACT

Phospholipase C Zeta 1 (PLCZ1) is considered a major sperm-borne oocyte activation factor. After gamete fusion, PLCZ1 triggers calcium oscillations in the oocyte, resulting in oocyte activation. In assisted fertilization, oocyte activation failure is a major cause of low fertility. Most cases of oocyte activation failures in humans related to male infertility are associated with gene mutations and/or altered PLCZ1. Consequently, PLCZ1 evaluation could be an effective diagnostic marker and predictor of sperm fertilizing potential for in vivo and in vitro embryo production. The characterization of PLCZ1 has been principally investigated in men and mice, with less known about the PLCZ1 impact on assisted reproduction in other species, such as cattle and horses. In horses, sperm PLCZ1 varies among stallions, and sperm populations with high PLCZ1 are associated with cleavage after intracytoplasmic sperm injection (ICSI). In contrast, bull sperm is less able to initiate calcium oscillations and undergo nuclear remodeling, resulting in poor cleavage after ICSI. Advantageously, injections of PLCZ1 are able to rescue oocyte failure in mouse oocytes after ICSI, promoting full development and birth. However, further research is needed to optimize PLCZ1 diagnostic tests for consistent association with fertility and to determine whether PLCZ1 as an oocyte-activating treatment is a physiological, efficient, and safe method for improving assisted fertilization in cattle and horses.

5.
J Assist Reprod Genet ; 40(11): 2565-2576, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37725179

ABSTRACT

BACKGROUND: The impact of vitrification on oocyte developmental competence as a function of donor age remains an important issue in assisted reproductive technologies (ARTs). METHODS: Equine germinal vesicle (GV) or metaphase II (M(II) oocytes were vitrified using the Cryotop® method. Spindle organization and chromosome alignment were evaluated from confocal imaging data sets of in vivo (IVO) or in vitro (IVM) matured oocytes subjected to vitrification or not. Intracytoplasmic sperm injection (ICSI) from the same groups was used to assess developmental potential. RESULTS: An increase in chromosome misalignment was observed in spindles from older mares when compared to those of younger mares (P < 0.05). When MII oocytes subjected to vitrification were examined following warming, there was no difference in the percentage of oocytes displaying chromosome misalignment. Next, GV oocytes, collected from the ovaries of younger and older mares, were compared between fresh IVM and IVM following vitrification and warming. For nonvitrified samples, an age difference was again noted for spindle organization and chromosome alignment, with a higher (P < 0.05) percentage of normal bipolar meiotic spindles with aligned chromosomes observed in nonvitrified oocytes from young versus older mares. Vitrification led to a reduction of spindle length (P < 0.05) for oocytes from old mares, whether vitrified at GV or MII stages, whereas this effect was not observed in oocytes from young mares except those vitrified at GV and subjected to IVM. Oocyte developmental potential after vitrification was evaluated after ICSI of vitrified and warmed MII or GV oocytes from young mares. From 25 MII oocytes, 18 oocytes were injected with sperm, and six blastocysts were produced, which, upon transfer to mares' uteri, resulted in four pregnancies. Immature (GV) oocytes collected from live mares were also vitrified, warmed, and matured in vitro before ICSI. In this group, nonvitrified, control, and vitrified oocytes did not differ (P > 0.05) with respect to the incidence of maturation to MII, cleavage after ICSI, or blastocyst development. CONCLUSION: These findings demonstrate an effect of maternal age in an equine model at the level of meiotic spindle integrity and chromosome positioning that is influenced by both the meiotic stage at which oocytes are vitrified and whether meiotic maturation occurred in vivo or in vitro.


Subject(s)
Sperm Injections, Intracytoplasmic , Vitrification , Animals , Horses , Male , Female , Sperm Injections, Intracytoplasmic/veterinary , Cryopreservation/veterinary , Cryopreservation/methods , Semen , Oocytes , Microscopy, Confocal
6.
Anim Reprod Sci ; 252: 107249, 2023 May.
Article in English | MEDLINE | ID: mdl-37119563

ABSTRACT

Maternal obesity elevates non-esterified fatty acids (NEFA) follicular concentrations. Bovine cumulus-oocyte complexes (COCs) matured in vitro under high NEFA have altered metabolism and reduced quality. Systemically, obesity promotes altered mitochondrial metabolism linked to L-carnitine insufficiency. We hypothesized that L-carnitine supplementation during IVM of bovine COCs in the presence of high NEFA would lessen the negative effects of exposure to excessive lipids on embryonic development and oxidative stress. COCs were collected from abattoir ovaries and matured in four groups: CON (control), LC (3 mM L-carnitine), HN (high NEFA: 200uM oleic, 150uM palmitic and 75uM stearic acid), and HNLC (HN and LC). Mature oocytes were assayed for aerobic and anaerobic metabolism utilizing oxygen and pH microsensors or fertilized in vitro (D0). Cleavage (D3) and blastocyst (D7, D8) rates were assessed. D3 embryos with ≥ 4 cells were stained for cytosolic and mitochondrial ROS. D8 blastocysts were assayed for gene transcript abundance of metabolic enzymes. Oocyte metabolism was not affected by IVM treatment. D3 formation of embryos with ≥ 4 cells were lower in LC or HN than CON or HNLC; blastocyst rates were greater for CON and lower for HN than LC and HNLC. D3 embryo mitochondrial and cytosolic ROS were reduced in HNLC when compared to other groups. IVM in HN altered blastocyst gene transcript abundance when compared to CON, but not LC or HNLC. In conclusion, supplementation with L-carnitine protects oocytes exposed to high NEFA during IVM and improves their developmental competence, suggesting that high lipid exposure may lead to L-carnitine insufficiency in bovine oocytes.


Subject(s)
Carnitine , In Vitro Oocyte Maturation Techniques , Animals , Cattle , Female , Pregnancy , In Vitro Oocyte Maturation Techniques/veterinary , Carnitine/pharmacology , Carnitine/metabolism , Fatty Acids, Nonesterified/pharmacology , Fatty Acids, Nonesterified/metabolism , Reactive Oxygen Species/metabolism , Oocytes , Blastocyst , Embryonic Development
7.
Cells ; 11(9)2022 04 24.
Article in English | MEDLINE | ID: mdl-35563743

ABSTRACT

The study aimed to investigate the influence of obesity on cellular features of equine endometrial progenitor cells (Eca EPCs), including viability, proliferation capacity, mitochondrial metabolism, and oxidative homeostasis. Eca EPCs derived from non-obese (non-OB) and obese (OB) mares were characterized by cellular phenotype and multipotency. Obesity-induced changes in the activity of Eca EPCs include the decline of their proliferative activity, clonogenic potential, mitochondrial metabolism, and enhanced oxidative stress. Eca EPCs isolated from obese mares were characterized by an increased occurrence of early apoptosis, loss of mitochondrial dynamics, and senescence-associated phenotype. Attenuated metabolism of Eca EPCs OB was related to increased expression of pro-apoptotic markers (CASP9, BAX, P53, P21), enhanced expression of OPN, PI3K, and AKT, simultaneously with decreased signaling stabilizing cellular homeostasis (including mitofusin, SIRT1, FOXP3). Obesity alters functional features and the self-renewal potential of endometrial progenitor cells. The impaired cytophysiology of progenitor cells from obese endometrium predicts lower regenerative capacity if used as autologous transplants.


Subject(s)
Endothelial Progenitor Cells , Animals , Endometrium/metabolism , Endothelial Progenitor Cells/metabolism , Female , Horses , Obesity/metabolism , Phenotype , Stem Cells/metabolism
8.
Reproduction ; 163(4): 183-198, 2022 04 01.
Article in English | MEDLINE | ID: mdl-37379450

ABSTRACT

Dietary supplementation is the most feasible method to improve oocyte function and developmental potential in vivo. During three experiments, oocytes were collected from maturing, dominant follicles of older mares to determine whether short-term dietary supplements can alter oocyte metabolic function, lipid composition, and developmental potential. Over approximately 8 weeks, control mares were fed hay (CON) or hay and grain products (COB). Treated mares received supplements designed for equine wellness and gastrointestinal health, flaxseed oil, and a proprietary blend of fatty acid and antioxidant support (reproductive support supplement (RSS)) intended to increase antioxidant activity and lipid oxidation. RSS was modified for individual experiments with additional antioxidants or altered concentrations of n-3 to n-6 fatty acids. Oocytes from mares supplemented with RSS when compared to COB had higher basal oxygen consumption, indicative of higher aerobic metabolism, and proportionately more aerobic to anaerobic metabolism. In the second experiment, oocytes collected from the same mares prior to (CON) and after approximately 8 weeks of RSS supplementation had significantly reduced oocyte lipid abundance. In the final experiment, COB was compared to RSS supplementation, including RSS modified to proportionately reduce n-3 fatty acids and increase n-6 fatty acids. The ability of sperm-injected oocytes to develop into blastocysts was higher for RSS, regardless of fatty acid content, than for COB. We demonstrated that short-term diet supplementation can directly affect oocyte function in older mares, resulting in oocytes with increased metabolic activity, reduced lipid content, and increased developmental potential.


Subject(s)
Oocytes , Semen , Horses , Animals , Female , Male , Diet/veterinary , Fatty Acids , Antioxidants , Fatty Acids, Omega-6
9.
J Equine Vet Sci ; 108: 103796, 2022 01.
Article in English | MEDLINE | ID: mdl-34818616

ABSTRACT

Zona pellucida (ZP) proteins are important for fertilization and sperm binding and are closely associated with cumulus cells. Communication between cumulus and oocytes is facilitated by intracellular membrane channels composed of connexins. The extent aging impacts potential differences in fertilization and reductions in fertility is not well understood. This study characterized age-related differences in transcript abundance of ZP proteins and connexins in cells from ovarian follicles. Additionally, differences in sperm binding to oocytes from old and young mares was evaluated. For experiment 1, oocytes, corona radiata, cumulus, and granulosa cells were collected from mares classified as young (4-12 years) or old (> 20 years). Transcript abundance was evaluated for connexins -37 (GJA4) and -43 (GJA1); zona pellucida glycoproteins 1, 2, 3, and 4 (ZP1, ZP2, ZP3, ZP4); Tubulin (TUBA1A), and equine chorionic gonadotropin ß. For experiment 2, oocytes that failed to cleave following intracytoplasmic sperm injection (ICSI) were stored in salt solution for up to 4 years and used for sperm binding assays. Transcript abundance for GJA1 was decreased in oocytes, corona radiata, and granulosa cells while GJA4 was decreased in cumulus cells from old compared to young mares. Additionally, ZP1 tended to be decreased in corona radiata and cumulus cells from old mares. Oocytes from old mares tended to bind less spermatozoa compared young mares. Oocytes that failed to cleave following ICSI can be used for sperm binding studies for up to 2 years without losses in sperm binding. Our findings suggest that maternal age may contribute to changes in cellular communication and the ZP that could impact sperm binding.


Subject(s)
Age Factors , Connexins , Spermatozoa , Zona Pellucida Glycoproteins , Animals , Connexins/genetics , Female , Horses , Male , Oocytes , Zona Pellucida
10.
Biosensors (Basel) ; 11(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34436058

ABSTRACT

Physiological events related to oxygen concentration gradients provide valuable information to determine the state of metabolizing biological cells. The existing oxygen sensing methods (i.e., optical photoluminescence, magnetic resonance, and scanning electrochemical) are well-established and optimized for existing in vitro analyses. However, such methods also present various limitations in resolution, real-time sensing performance, complexity, and costs. An electrochemical imaging system with an integrated microelectrode array (MEA) would offer attractive means of measuring oxygen consumption rate (OCR) based on the cell's two-dimensional (2D) oxygen concentration gradient. This paper presents an application of an electrochemical sensor platform with a custom-designed complementary-metal-oxide-semiconductor (CMOS)-based microchip and its Pt-coated surface MEA. The high-density MEA provides 16,064 individual electrochemical pixels that cover a 3.6 mm × 3.6 mm area. Utilizing the three-electrode configuration, the system is capable of imaging low oxygen concentration (18.3 µM, 0.58 mg/L, or 13.8 mmHg) at 27.5 µm spatial resolution and up to 4 Hz temporal resolution. In vitro oxygen imaging experiments were performed to analyze bovine cumulus-oocytes-complexes cells OCR and oxygen flux density. The integration of a microfluidic system allows proper bio-sample handling and delivery to the MEA surface for imaging. Finally, the imaging results are processed and presented as 2D heatmaps, representing the dissolved oxygen concentration in the immediate proximity of the MEA. This paper provides the results of real-time 2D imaging of OCR of live cells/tissues to gain spatial and temporal dynamics of target cell metabolism.


Subject(s)
Biosensing Techniques , Microelectrodes , Oxides , Oxygen , Animals , Cattle , Oocytes , Respiration
11.
Reproduction ; 161(4): 399-409, 2021 04.
Article in English | MEDLINE | ID: mdl-33539317

ABSTRACT

Advanced maternal age is associated with a decline in fertility and oocyte quality. We used novel metabolic microsensors to assess effects of mare age on single oocyte and embryo metabolic function, which has not yet been similarly investigated in mammalian species. We hypothesized that equine maternal aging affects the metabolic function of oocytes and in vitro-produced early embryos, oocyte mitochondrial DNA (mtDNA) copy number, and relative abundance of metabolites involved in energy metabolism in oocytes and cumulus cells. Samples were collected from preovulatory follicles from young (≤14 years) and old (≥20 years) mares. Relative abundance of metabolites in metaphase II oocytes (MII) and their respective cumulus cells, detected by liquid and gas chromatography coupled to mass spectrometry, revealed that free fatty acids were less abundant in oocytes and more abundant in cumulus cells from old vs young mares. Quantification of aerobic and anaerobic metabolism, respectively measured as oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in a microchamber containing oxygen and pH microsensors, demonstrated reduced metabolic function and capacity in oocytes and day-2 embryos originating from oocytes of old when compared to young mares. In mature oocytes, mtDNA was quantified by real-time PCR and was not different between the age groups and not indicative of mitochondrial function. Significantly more sperm-injected oocytes from young than old mares resulted in blastocysts. Our results demonstrate a decline in oocyte and embryo metabolic activity that potentially contributes to the impaired developmental competence and fertility in aged females.


Subject(s)
Cumulus Cells/pathology , Gene Expression Regulation, Developmental , In Vitro Oocyte Maturation Techniques/veterinary , Lipids/analysis , Maternal Age , Mitochondria/pathology , Oocytes/pathology , Oogenesis , Animals , Cumulus Cells/metabolism , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Female , Horses , Mitochondria/metabolism , Oocytes/metabolism , Oxygen Consumption
12.
J Equine Vet Sci ; 89: 103022, 2020 06.
Article in English | MEDLINE | ID: mdl-32563447

ABSTRACT

Numerous similarities in reproductive aging have been documented between the mare and woman. Aging is associated with a decline in fertility. In mares and women, oocyte transfer procedures were initially used to establish that oocyte donor age is associated with oocyte quality. Age-associated differences in oocytes include altered morphology, gene expression, and developmental potential. Reactive oxygen species and mitochondrial dysfunction are thought to be important contributors to loss of oocyte quality. In the woman, aneuploidy is a primary consideration with maternal aging. Although misalignment of chromosomes during meiosis has been observed in the mare, less is known in this area. Reproductive aging will be reviewed in the mare and compared with the woman with emphasis on factors that affect oocyte quality and developmental potential. Areas in which the mare could be used as a research model to study reproductive aging in women will be highlighted.


Subject(s)
Oocytes , Reproduction , Aging , Animals , Female , Fertility , Horses , Meiosis
13.
Reprod Fertil Dev ; 31(12): 1758-1770, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31718765

ABSTRACT

Intracytoplasmic sperm injection (ICSI) is used to produce equine embryos invitro. The speed of embryo development invitro is roughly equivalent to what has been described for embryos produced invivo. Morphological evaluations of ICSI-produced embryos are complicated by the presence of debris and the dark nature of equine embryo cytoplasm. Morulas and early blastocysts produced invitro appear similar to those produced invivo. However, with expansion of the blastocyst, distinct differences are observed compared with uterine embryos. In culture, embryos do not undergo full expansion and thinning of the zona pellucida (ZP) or capsule formation. Cells of the inner cell mass (ICM) are dispersed, in contrast with the differentiated trophoblast and ICM observed in embryos collected from uteri. As blastocysts expand invitro, embryo cells often escape the ZP as organised or disorganised extrusions of cells, probably through the hole incurred during ICSI. Quality assessment of invitro-produced early stage equine embryos is in its infancy, because limited information is available regarding the relationship between morphology and developmental competence. Early embryo development invivo is reviewed in this paper, with comparisons made to embryo development invitro and clinical assessments from a laboratory performing commercial ICSI for >15 years.


Subject(s)
Embryo Culture Techniques/veterinary , Embryo, Mammalian , Embryonic Development/physiology , Fertilization in Vitro/veterinary , Horses/embryology , Animals , Blastocyst/cytology , Blastocyst/physiology , Cell Shape , Cells, Cultured , Embryo Culture Techniques/standards , Embryo Transfer/veterinary , Embryo, Mammalian/cytology , Female , Fertilization in Vitro/methods , Fertilization in Vitro/standards , Male , Quality Control , Sperm Injections, Intracytoplasmic/veterinary
14.
Reprod Fertil Dev ; 31(12): 1812-1822, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31630724

ABSTRACT

In this retrospective study the morphological characteristics of oocytes and cleavage stage embryos were associated with pregnancy results from clinical intracytoplasmic sperm injection (ICSI) in mares. Oocytes were collected from preovulatory follicles, and images (×200; n=401) were captured for measurements of ooplasm, the perivitelline space and zona pellucida. After ICSI and before transfer into recipients' oviducts, cleavage stage embryos were imaged (n=178). Oocyte donor ages (3-13, 14-19, 20-23, 24-27 years) were compared, as were mares aged 3-13 years without versus with recent histories of performance or injury stress. Cleavage rates did not differ with age. However, pregnancy rates declined and pregnancy loss rates (11-50 days gestation) increased with mare age. Young mares with performance or injury stress had significantly lower pregnancy rates than young mares under management typical for broodmares. No morphological oocyte characteristic was consistently associated with age or pregnancy outcome. Cleavage stage embryo morphology was not associated with pregnancy outcome; however, the rate of embryo development before oviductal embryo transfer was faster (P<0.05) for embryos that resulted in an early pregnancy (≤17 days) and tended (P ≤ 0.1) to be higher for embryos that produced a 50-day pregnancy. Embryonic vesicles that had a more rapid increase in diameter were more often (P<0.05) maintained until 50 days gestation.


Subject(s)
Cleavage Stage, Ovum/cytology , Embryo Transfer/methods , Horses/physiology , Maternal Age , Oocytes/cytology , Pregnancy, Animal , Sperm Injections, Intracytoplasmic/methods , Animals , Cell Size , Embryo Transfer/veterinary , Embryo, Mammalian/cytology , Embryonic Development/physiology , Female , Male , Pregnancy , Pregnancy Rate , Retrospective Studies , Sperm Injections, Intracytoplasmic/veterinary
15.
Reprod Fertil Dev ; 31(12): 1778-1792, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31597592

ABSTRACT

Oocyte activation is initiated when a fertilising spermatozoon delivers sperm-borne oocyte-activating factor(s) into the oocyte cytoplasm. Candidates for oocyte activation include two proteins, phospholipase Cζ1 (PLCZ1) and postacrosomal WW-binding protein (PAWP; also known as WBP2 N-terminal like (WBP2NL)). We localised PLCZ1 and WBP2NL/PAWP in stallion spermatozoa and investigated the PLCZ1 content and sperm parameters as well as cleavage after intracytoplasmic sperm injection (ICSI). PLCZ1 was identified as 71-kDa protein in the acrosomal and postacrosomal regions, midpiece and principal piece of the tail. Anti-WBP2NL antibody identified two WBP2NL bands (~28 and ~32kDa) in the postacrosomal region, midpiece and principal piece of the tail. PLCZ1 and WBP2NL expression was positively correlated (P=0.04) in sperm heads. Flow cytometry evaluation of PLCZ1 revealed large variations in fluorescence intensity and the percentage of positively labelled spermatozoa among stallions. PLCZ1 expression was significantly higher in viable than non-viable spermatozoa, and DNA fragmentation was negatively correlated with PLCZ1 expression and the percentage of positively labelled spermatozoa (P<0.05). The use of equine sperm populations considered to have high versus low PLCZ1 content resulted in significantly higher cleavage rates after ICSI of bovine and equine oocytes, supporting the importance of PLCZ1 for oocyte activation.


Subject(s)
Cleavage Stage, Ovum/metabolism , Phosphoinositide Phospholipase C/analysis , Phosphoinositide Phospholipase C/metabolism , Seminal Plasma Proteins/metabolism , Sperm Injections, Intracytoplasmic , Spermatozoa/metabolism , Acrosome/metabolism , Animals , Cells, Cultured , Embryo Culture Techniques/veterinary , Embryo, Mammalian , Female , Flow Cytometry , Horses/embryology , Horses/metabolism , Male , Tissue Distribution
16.
Methods Mol Biol ; 2006: 219-227, 2019.
Article in English | MEDLINE | ID: mdl-31230284

ABSTRACT

Establishment of optimal methods for equine embryo culture has been slow when compared to some domestic species. In part, this delay was caused by the failure of standard in vitro fertilization techniques in horses. However, the development of intracytoplasmic sperm injection (ICSI) for the assisted fertilization of equine oocytes has resulted in a renewed interest in establishing optimal methods for embryo culture. Currently, ICSI-produced equine embryos are cultured using media designed for other species or other cell cultures and, typically, with the addition of serum. Although systems specifically for horse embryo culture still have not been established, ICSI-produced embryos are developmentally competent and capable of producing live offspring.


Subject(s)
Blastocyst/metabolism , Embryo Culture Techniques/methods , Oocytes/metabolism , Sperm Injections, Intracytoplasmic/methods , Animals , Blastocyst/cytology , Female , Horses , Male , Oocytes/cytology
17.
Theriogenology ; 136: 36-42, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31242456

ABSTRACT

We examined the effects of different freezing extenders, cryoprotectant agents (CPA) and initial thawing temperatures for preparing doses of refrozen stallion sperm for intracytoplasmic sperm injection (ICSI). Single ejaculates, from twelve stallions, were frozen in lactose-EDTA-egg yolk extender (LE) with 5% glycerol. In experiment 1, sperm were initially thawed to 5 °C or 37 °C, before being diluted in LE or skim milk-egg yolk extender (SMEY) containing either 5% glycerol (GLY), 5% methylformamide (MF) or 5% of a combination of both (GMF). In experiment 2, frozen sperm were initially thawed to 5 °C, diluted and refrozen in SMEY containing 2, 4, 6 or 8% GLY or GMF. In Experiment 1, sperm motility was reduced after each cryopreservation cycle (P < 0.05). Extender type did not affect motility after refreezing (P > 0.05), but sperm initially thawed to 5 °C exhibited higher motility than sperm thawed to 37 °C (P < 0.05). In addition, sperm refrozen in SMEY containing MF or GMF exhibited higher motility than sperm refrozen in GLY alone (P < 0.05). In experiment 2, there was an interaction between CPA and CPA concentration (P < 0.05). Sperm refrozen with GMF had higher motility than refrozen sperm with GLY (P < 0.05), and while GLY concentration did not affect post-thaw motility (P > 0.05). Sperm refrozen with 6 or 8% GMF exhibited the highest motility (P < 0.05). In conclusion, sperm motility is best maintained when thawing and refreezing stallion sperm in low sperm concentration ICSI doses by initially thawing the sperm to 5 °C and diluting the sperm in a freezing extender with 8% GMF.


Subject(s)
Cryopreservation/veterinary , Cryoprotective Agents/pharmacology , Horses/physiology , Semen Preservation/veterinary , Sperm Injections, Intracytoplasmic/veterinary , Spermatozoa/physiology , Animals , Freezing , Glycerol/pharmacology , Male , Milk , Sperm Motility
18.
Biosens Bioelectron ; 133: 39-47, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30909011

ABSTRACT

Rates of cellular oxygen consumption (OCR) and extracellular acidification (ECAR) are widely used proxies for mitochondrial oxidative phosphorylation (OXPHOS) and glycolytic rate in cell metabolism studies. However, ECAR can result from both oxidative metabolism (carbonic acid formation) and glycolysis (lactate release), potentially leading to erroneous conclusions about metabolic substrate utilization. Co-measurement of extracellular glucose and lactate flux along with OCR and ECAR can improve the accuracy and provide better insight into cellular metabolic processes but is currently not feasible with any commercially available instrumentation. Herein, we present a miniaturized multi-sensor platform capable of real-time monitoring of OCR and ECAR along with extracellular lactate and glucose flux for small biological samples such as single equine embryos. This multiplexed approach enables validation of ECAR resulting from OXPHOS versus glycolysis, and expression of metabolic flux ratios that provide further insight into cellular substrate utilization. We demonstrate expected shifts in embryo metabolism during development and in response to OXPHOS inhibition as a model system for monitoring metabolic plasticity in very small biological samples. Furthermore, we also present a preliminary interference analysis of the multi-sensor platform to allow better understanding of sensor interference in the proposed multi-sensor platform. The capability of the platform is illustrated with measurements of multi-metabolites of single-cell equine embryos for assisted reproduction technologies. However, this platform has a wide potential utility for analyzing small biological samples such as single cells and tumor biopsies for immunology and cancer research applications.


Subject(s)
Biosensing Techniques , Energy Metabolism , Oxidative Phosphorylation , Oxygen Consumption , Animals , Cell Line , Cell Respiration/physiology , Glucose/chemistry , Glycolysis/physiology , Horses , Humans , Mitochondria/chemistry , Single-Cell Analysis
19.
Anim Reprod Sci ; 202: 1-9, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30655027

ABSTRACT

We determined if microfluidic sorting (MF) of frozen-thawed stallion sperm improves sperm population characteristics and results in embryo development after intracytoplasmic sperm injection (ICSI). The efficiency and efficacy of MF sperm separation was evaluated by comparing pre- and post-separation sperm population variables. Procedural comparisons were performed after sorting with MF, single-layer colloidal centrifugation (SLC) or swim-up (SU), and cleavage and embryo development were evaluated after ICSI using MF-sorted sperm. In Experiment 1, when compared to the original sperm sample, MF sorting resulted in a sperm subpopulation with greater motility, morphology, viability, and membrane as well as DNA integrity. After sorting by MF, SLC and SU in Experiment 2, motility, viability, and membrane integrity were similar for sperm sorted using MF and SLC; however, morphology and DNA integrity were greater in sperm sorted using MF when compared with SLC. Swim-up was the least effective sorting method. In Experiment 3, sperm were processed using MF and SLC prior to ICSI. Motility, morphology and DNA integrity were similar for sperm subpopulations sorted using either method; but viability was greater for sperm sorted using MF than SLC. Sorting did not improve sperm membrane integrity. Sorting with MF prior to ICSI resulted in similar cleavage and blastocyst development rates as SLC. We concluded that MF separation of stallion sperm resulted in a subpopulation with improved sperm population parameters, comparable or better than SLC and SU. Embryos were produced after ICSI using MF sperm sorting.


Subject(s)
Microfluidics/methods , Sperm Injections, Intracytoplasmic/veterinary , Sperm Motility , Spermatozoa/physiology , Animals , Cells, Cultured , Female , Horses , Male , Oocytes/cytology , Oocytes/physiology , Quality Control , Spermatozoa/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...