Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 930: 172675, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38670366

ABSTRACT

In last 10 years, the interest about the presence of microplastics (MPs) in the environment has strongly grown. Wastewaters function as a carrier for MPs contamination from source to the aquatic environment, so the knowledge of the fate of this emerging contaminant in wastewater treatment plants (WWTPs) is a priority. This work aims to review the presence of MPs in the influent wastewater (WW) and the effectiveness of the treatments of conventional WWTPs. Moreover, the negative impacts of MPs on the management of the processes have been also discussed. The work also focuses on the possible approaches to tackle MPs contamination enhancing the effectiveness of the WWTPs. Based on literature results, despite WWTPs are not designed for MPs removal from WW, they can effectively remove the MPs (up to 99 % in some references). Nevertheless, they normally act as "hotspots" of MPs contamination considering the remaining concentration of MPs in WWTPs' effluents can be several orders of magnitude higher than receiving waters. Moreover, MPs removed from WW are concentrated in sewage sludge (potentially >65 % of MPs entering the WWTP) posing a concern in case of the potential reuse as a soil improver. This work aims to present a paradigm shift intending WWTPs as key barriers for environmental protection. Approaches for increasing effectiveness against MPs have been discussed in order to define the optimal point(s) of the WWTP in which these technologies should be located. The need of a future legislation about MPs in water and sludge is discussed.

2.
Environ Sci Pollut Res Int ; 31(11): 16426-16436, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316739

ABSTRACT

Wastewater-based epidemiology (WBE) has been already proposed by several authors for estimating the consumption of drugs, mainly the illicit ones. However, not much information is available about the actual reliability of this tool given the absence of comparison with the actual consumption. This work aims to evaluate the reliability of the WBE as a tool for estimating the consumption of pharmaceuticals in urban area. Measured consumption back-calculated with a WBE approach was compared with prescription of pharmaceutical products as "control." Moreover, seasonal influence on (i) pharmaceutical consumption, (ii) load of pharmaceutical products in the sewer system, and (iii) reliability of WBE was evaluated. Ciprofloxacin, sulfamethoxazole, metoprolol, carbamazepine, and citalopram were estimated by WBE with a difference respect to the "control" value lower than 0.2 order of magnitude while only trimethoprim and sotalol exceeded the 0.5 order of magnitude of difference but below the 1 order of magnitude. Sedatives were the best represented by WBE (on average 0.15 order of magnitude of difference compared to prescription data). However, further studies are suggested to fully estimate the influence of the type of APs on the reliability of the WBE. Seasonal patterns were found for the load of ciprofloxacin in the sewer and for the consumption of sulfamethoxazole and trimethoprim by population but seasonal changes did not have a significant impact (p > 0.05) on the reliability of WBE. Despite some gaps remained to optimize the reliability of the tool, WBE can be considered a valid method to estimate the consumption of prescribed drugs from the analysis of the sewer system.


Subject(s)
Wastewater-Based Epidemiological Monitoring , Water Pollutants, Chemical , Seasons , Wastewater , Reproducibility of Results , Water Pollutants, Chemical/analysis , Ciprofloxacin , Sulfamethoxazole , Trimethoprim , Pharmaceutical Preparations
3.
Sci Total Environ ; 891: 164386, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37263433

ABSTRACT

The presence of pharmaceuticals (PHA) and narcotics (NAR) in wastewater (WW) has attracting growing interest due to concern for aquatic environment and the possibility to exploit their presence to estimate drug consumption by population. This work aims to (i) quantify PHA and NAR in the WW of the Brno metropolitan area, (ii) determine the effectiveness of the current conventional wastewater treatment plant (WWTP), and (iii) estimate the illicit drug (ID) consumption. 23 PHA and 9 NAR were frequently detected in the untreated WW and studied for their removal. One year monitoring was carried out to highlight a possible seasonal pattern with PHA and NAR load in WW, WWTP effectiveness, and illicit consumption. Results highlighted that the most abundant PHA and NAR were caffeine (73.9 ± 6.9 µg L-1) and methamphetamine (2.3 ± 0.1 µg L-1) while oxazepam (0.13 ± 0.05 µg L-1) and EDDP (0.02 ± 0.01 µg L-1) were the lowest ones, respectively. Only paracetamol, caffeine, atenolol, ciprofloxacin, amphetamine, cocaine, morphine, and benzoylecgonine exhibited a high biodegradability being removed almost completely (> 90 %). A predominant illicit use of methamphetamine was estimated (17 ± 0.6 doses 1000.inh-1 d-1) that might suggest a higher number of consumers than previous official estimation. A lower abuse of cocaine (2.7 ± 0.5 doses 1000.inh-1 d-1), amphetamine (2.2 ± 0.3 doses 1000.inh-1 d-1), methadone (1.1 ± 0.2 doses 1000.inh-1 d-1), heroin (0.9 ± 0.2 doses 1000.inh-1 d-1), and MDMA (0.7 ± 0.1 doses 1000.inh-1 d-1) was found. A seasonality pattern was highlighted for some PHA and NAR influent load and removal, and, about ID consumption, only for heroin and methadone. These results will be useful for water utilities, to enhance the knowledge about the presence and removal of PHA and NAR, and local and national authorities to evaluate and counteract the problem of ID abuse.


Subject(s)
Cocaine , Illicit Drugs , Methamphetamine , Substance-Related Disorders , Water Pollutants, Chemical , Humans , Wastewater , Narcotics , Wastewater-Based Epidemiological Monitoring , Heroin , Seasons , Caffeine , Water Pollutants, Chemical/analysis , Environmental Monitoring , Amphetamine , Cocaine/analysis , Methadone , Substance Abuse Detection/methods , Substance-Related Disorders/epidemiology
4.
Article in English | MEDLINE | ID: mdl-36982044

ABSTRACT

Since SARS-CoV-2 was identified, the scientific community has tried to understand the variables that can influence its spread. Several studies have already highlighted a possible link between particulate matter (PM) and COVID-19. This work is a brief discussion about the latest findings on this topic, highlighting the gaps in the current results and possible tips for future studies. Based on the literature outcomes, PM is suspected to play a double role in COVID-19: a chronic and an acute one. The chronic role is related to the possible influence of long-term and short-term exposure to high concentrations of PM in developing severe forms of COVID-19, including death. The acute role is linked to the possible carrier function of PM in SARS-CoV-2. The scientific community seems sure that the inflammatory effect on the respiratory system of short-term exposure to a high concentration of PM, and other additional negative effects on human health in cases of longer exposure, increases the risk of developing a more severe form of COVID-19 in cases of contagion. On the contrary, the results regarding PM acting as a carrier of SARS-CoV-2 are more conflicting, especially regarding the possible inactivation of the virus in the environment, and no final explanation on the possible acute role of PM in the spread of COVID-19 can be inferred.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Particulate Matter/analysis , SARS-CoV-2 , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis
5.
Sci Total Environ ; 848: 157794, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35932854

ABSTRACT

Greenhouse gas (GHG) emissions represent one of the main drawbacks of wastewater (WW) treatment. However, results of a detailed estimation of the emissions can be a valid tool to define optimal solutions for minimizing impact of WW treatment system on the environment. Thermophilic biological fluidized bed reactor (TBFBR) has been recently proposed as an alternative solution for biological sludge minimization in wastewater treatment plant (WWTPs). In this work, 5 diverse scenarios of sludge line composition were studied and combined with 5 diverse sludge disposal options. GHG emissions in 25 combinations were fully investigated to define optimal sludge treatment and disposal option. Results suggested that TBFBR help to reduce net emitted GHGs with respect to scenario with conventional stabilization treatment in sludge line (anaerobic digestion) (-32.3 ± 3.55 %) thanks to (i) the reuse in water line of the aqueous residue of TBFBR as alternative carbon source, (ii) the significant minimization of sludge production, and (iii) the contained impact of gross GHG emissions due to the energy consumption of this process. The strong minimization of sludge also led to a decisive reduction in GHG emissions in the subsequent phases of transport, additional treatments, and final disposal making the choice of the disposal option indifferent on the overall GHG emission estimation. Moreover, the coupling of processes for the simultaneous and preventive maximization of energy recovery (TCH, and AnaD) before sludge minimization in TBFBR determined a limited reduction of GHG emission compared to scenario with TBFBR alone (-3.71 ± 1.47 %).


Subject(s)
Greenhouse Gases , Water Purification , Carbon , Greenhouse Effect , Sewage/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water
6.
Environ Technol ; 43(22): 3426-3443, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33900149

ABSTRACT

This research aimed to identify a tool to objectively analyse the performance and the environmental contextualisation of sewer systems (SwSs) and wastewater treatment plants (WWTPs). This procedure performs assessment by calculating performance indices which could be subsequently applied to SwSs and WWTPs with different characteristics. The proposed tool can be applied conveniently over the years by managers of integrated urban water management systems for the analysis of different realities also allowing the evaluation of the effects of upgrades carried out during the management phases. The proposed analysis allows the optimisation of SwSs and can profitably guide the choice and the priority among possible interventions for the sewerage infrastructure and WWTPs providing a verification and evaluation protocol as well as a financial planning tool.


Subject(s)
Wastewater , Water Purification , Sewage/chemistry , Waste Disposal, Fluid/methods , Wastewater/analysis
7.
Membranes (Basel) ; 11(12)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34940478

ABSTRACT

Minimizing the biological sewage sludge (BSS) produced by wastewater treatment plants (WWTPs) represents an increasingly difficult challenge. With this goal, tests on a semi-full scale Thermophilic Alternate Membrane Biological Reactor (ThAlMBR) were carried out for 12 months. ThAlMBR was applied both on thickened (TBSS) and digested biological sewage sludge (DBSS) with alternating aeration conditions, and emerged: (i) high COD removal yields (up to 90%), (ii) a low specific sludge production (0.02-0.05 kgVS produced/kgCODremoved), (iii) the possibility of recovery the aqueous carbon residue (permeate) in denitrification processes, replacing purchased external carbon sources. Based on the respirometric tests, an excellent biological treatability of the permeate by the mesophilic biomass was observed and the denitrification kinetics reached with the diluted permeate ((4.0 mgN-NO3-/(gVSS h)) were found comparable to those of methanol (4.4 mgN-NO3-/(gVSS h)). Moreover, thanks to the similar results obtained on TBSS and DBSS, ThAlMBR proved to be compatible with diverse sludge line points, ensuring in both cases an important sludge minimization.

8.
Article in English | MEDLINE | ID: mdl-34639629

ABSTRACT

The interest in research on up-flow anaerobic sludge blanket (UASB) reactors is growing. The meta-analysis of bibliometric data highlighted the growing interest in four diverse topics: (i) energy recovery production; (ii) combination with other treatments; (iii) the study of processes for the removal of specific pollutants and, (iv) characterization of microbial community and granular sludge composition. In particular, the papers published in the first 6 months of 2021 on this process were selected and critically reviewed to highlight and discuss the results, the gaps in the literature and possible ideas for future research. Although the state of research on UASB is to be considered advanced, there are still several points that will be developed in future research such as the consolidation of the results obtained on a semi-industrial or real scale, the use of real matrices instead of synthetic ones and a more in-depth study of the effect of substances such as antibiotics on the microbiota and microbiome of UASB granular biomass. To date, few and conflicting data about the environmental footprint of UASB are available and therefore other studies on this topic are strongly suggested.


Subject(s)
Microbiota , Sewage , Anaerobiosis , Bibliometrics , Bioreactors , Methane , Waste Disposal, Fluid
9.
Article in English | MEDLINE | ID: mdl-33638072

ABSTRACT

Northern Italy was the most affected by CoViD-19 compared to other Italian areas and comprises zones where air pollutants concentration was higher than in the rest of Italy. The aim of the research is to determine if particulate matter (PM) has been the primary cause of the high CoViD-19 spread rapidity in some areas of Northern Italy. Data of PM for all the 41 studied cities were collected from the local environmental protection agencies. To compare air quality data with epidemiological data, a statistical analysis was conducted identifying the correlation matrices of Pearson and Spearman, considering also the possible incubation period of the disease. Moreover, a model for the evaluation of the epidemic risk, already proposed in literature, was used to evaluate a possible influence of PM on CoViD-19 spread rapidity. The results exclude that PM alone was the primary cause of the high CoVid-19 spread rapidity in some areas of Northern Italy. Further developments are necessary for a better comprehension of the influence of atmospheric pollution parameters on the rapidity of spread of the virus SARS-CoV-2, since a synergistic action with other factors (such as meteorological, socio-economic and cultural factors) could not be excluded by the present study.

10.
Environ Sci Pollut Res Int ; 28(42): 59452-59461, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33570731

ABSTRACT

Recently, among AOPs, photoelectrocatalysis (PEC) on TiO2 is gaining interest. In this study, five different real waters sampled in four different points of the integrated urban water management (IUWM) system were tested with PEC and UV alone, for comparison. This work aims to verify the effect of the PEC suggesting the optimal position in IUWM system where the PEC should be located to obtain the best performance. In groundwaters (GWs), PEC effectively removed atrazine-based compounds (> 99%), trichloroethylene, and perchloroethylene (96%), after 15 min of reaction time. However, given the low concentrations of emerging compounds, the synergistic effect of UV radiation with the catalyst and with the polarization of the mesh was not visible, with very few differences compared with the results obtained with UV alone. Pharmaceutical industrial wastewater (IWW) showed a significant increase in biodegradability after 2 h, both if subjected to PEC or UV (200%), despite the absence of COD removal. The PEC applied on IWW from a sewage sludge treatment plant allowed to effectively remove the COD (39.6%) and increase the biodegradability (300%). Good results in terms of COD removal (33.9%) and biodegradability increase (+900%) were also achieved testing PEC on wastewater treatment plant effluent. Except for GWs, PEC allowed significant EEO savings respect to UV alone (76.2-99.1%).


Subject(s)
Water Pollutants, Chemical , Water Purification , Titanium , Waste Disposal, Fluid , Wastewater , Water Supply
11.
Process Saf Environ Prot ; 146: 952-960, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33390670

ABSTRACT

Nitrogen dioxide (NO2) can have harmful effects on human health and can act as a precursor for the formation of other air pollutants in urban environment such as secondary PM2.5 and ozone. The lockdown measures for CoViD-19 allowed to simulate on a large scale the massive and prolonged reduction of road traffic (the main source for NO2 in urban environment). This work aims to selectively assess the maximum impact that total traffic blocking measures can have on NO2. For this reason, three megacities (London, Milan and Paris) were chosen which had similar characteristics in terms of climatic conditions, population, policies of urban traffic management and lockdown measures. 52 air quality control units have been used to compare data measured in lockdown and in the same periods of previous years, highlighting a significant decrease in NO2 concentration due to traffic (London: 71.1 % - 80.8 %; Milan: 8.6 % - 42.4 %; Paris: 65.7 % - 79.8 %). In 2020 the contribution of traffic in London, Milan and Paris dropped to 3.3 ± 1.3 µg m-3, 6.1 ± 0.8 µg m-3, and 13.4 ± 1.5 µg m-3, respectively. Despite the significant reduction in the NO2 concentration, in UT stations average NO2 concentrations higher than 40 µg m-3 were registered for several days. In order to reduce the pollution, the limitation of road traffic could be not enough, but a vision also aimed at rethink the vehicles and their polluting effects should be developed.

12.
Toxins (Basel) ; 12(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371280

ABSTRACT

The hepatotoxin microcystin-LR (MC-LR) represents one of the most toxic cyanotoxins for human health. Considering its harmful effect, the World Health Organization recommended a limit in drinking water (DW) of 1 µg L-1. Due to the ineffectiveness of conventional treatments present in DW treatment plants against MC-LR, advanced oxidation processes (AOPs) are gaining interest due to the high redox potential of the OH• radicals. In this work UV/H2O2 was applied to a real lake water to remove MC-LR. The kinetics of the UV/H2O2 were compared with those of UV and H2O2 showing the following result: UV/H2O2 > UV > H2O2. Within the range of H2O2 tested (0-0.9 mM), the results showed that H2O2 concentration and the removal kinetics followed an increasing quadratic relation. By increasing the initial concentration of H2O2, the consumption of oxidant also increased but, in terms of MC-LR degraded for H2O2 dosed, the removal efficiency decreased. As the initial MC-LR initial concentration increased, the removal kinetics increased up to a limit concentration (80 µg L-1) in which the presence of high amounts of the toxin slowed down the process. Operating with UV fluence lower than 950 mJ cm-2, UV alone minimized the specific energy consumption required. UV/H2O2 (0.3 mM) and UV/H2O2 (0.9 mM) were the most advantageous combination when operating with UV fluence of 950-1400 mJ cm-2 and higher than 1400 mJ cm-2, respectively.


Subject(s)
Drinking Water/analysis , Hydrogen Peroxide/pharmacology , Lakes/analysis , Marine Toxins/analysis , Microcystins/analysis , Ultraviolet Rays , Water Purification/methods , Conservation of Water Resources/methods , Drinking Water/microbiology , Humans , Marine Toxins/pharmacokinetics , Microcystins/pharmacokinetics
13.
Process Saf Environ Prot ; 143: 196-203, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32834559

ABSTRACT

As for the SARS coronavirus in the 2003 epidemic, the presence of SARS-CoV-2 has been demonstrated in faeces and, in some cases, urine of infected people, as well as in wastewater. This paper proposes a critical review of the state of the art regarding studies on the presence of SARS-CoV-2 in wastewater and sewage sludge, the factors affecting its inactivation and the main proposed treatments. In-vitro tests demonstrated low resistance of SARS-CoV-2 to high temperature, while even significant changes in pH would not seem to determine the disappearance of the virus. In real wastewater and in sewage sludge, to date studies on the influence of the different parameters on the inactivation of SARS-CoV-2 are not available. Therefore, studies involving other HCoVs such as SARS-CoV and HCoV-229E have been also considered, in order to formulate a hypothesis regarding its behaviour in sewage and throughout the steps of biological treatments in WWTPs. Finally, SARS-CoV-2 in wastewater might track the epidemic trends: although being extremely promising, an effective and wide application of this approach requires a deeper knowledge of the amounts of viruses excreted through the faeces and the actual detectability of viral RNA in sewage.

14.
Environ Sci Pollut Res Int ; 27(22): 27952-27960, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32405936

ABSTRACT

The critical issue generated by foaming in wastewater treatment plants (WWTPs) is a problem that is currently very common and shared, but which to date is treated mainly only at the management level. In this work, an experimental study with foam tests on real and synthetic waters was conducted using a laboratory scale plant and foaming power indices were calculated. To date, the estimation of foaming potential is mainly based on these indices which give information only on height/volume of foams but not on the type of foams, in terms of consistency and therefore stability. Tests showed that foaming power indices were highly variable with the same water: it was not possible to identify a single foaming potential value for each water. Two models were proposed to estimate the percentage increase in height of chemical foams produced following the introduction of air below the surface of a liquid. In terms of determination coefficient, the results obtained from the complex model were better: R2 was 0.82 for the simple linear model and 0.90 for the complex one. This approach has allowed to underline some critical aspects of foaming potential as it is determined today and the possible improvements applicable for a more objective evaluation.


Subject(s)
Wastewater
15.
Sci Total Environ ; 732: 139280, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32402928

ABSTRACT

Based on the rapid spread of the CoViD-2019, a lockdown was declared in the whole Northern Italy by the Government. The application of increasingly rigorous containment measures allowed to reduce the impact of the CoViD-2019 pandemic on the Italian National Health System but at the same time these restriction measures gave also the opportunity to assess the effect of anthropogenic activities on air pollutants in an unprecedented way. This paper aims to study the impact of the partial and total lockdown (PL and TL, respectively) on air quality in the Metropolitan City of Milan. As results, the severe limitation of people movements following the PL and the subsequent TL determined a significant reduction of pollutants concentration mainly due to vehicular traffic (PM10, PM2.5, BC, benzene, CO, and NOx). The lockdown led to an appreciable drop in SO2 only in the city of Milan while it remained unchanged in the adjacent areas. Despite the significant decrease in NO2 in the TL, the O3 exhibited a significant increase, probably, due to the minor NO concentration. In Milan and SaA the increase was more accentuated, probably, due to the higher average concentrations of benzene in Milan than the adjacent areas that might have promoted the formation of O3 in a more significant way.


Subject(s)
Air Pollution , Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Air Pollutants , COVID-19 , Cities , Environmental Monitoring , Humans , Italy , Particulate Matter , SARS-CoV-2
16.
Article in English | MEDLINE | ID: mdl-32235508

ABSTRACT

In the coming years, water stress is destined to worsen considering that the consumption of water is expected to increase significantly, and climate change is expected to become more evident. Greywater (GW) has been studied as an alternative water source in arid and semiarid zones. Although there is no single optimal solution in order to treat GW, constructed wetlands proved to be effective. In this paper, the results of the treatment of a real GW by a horizontal flow constructed wetland (HFCW) for more than four months are shown. In the preliminary laboratory-scale plant, Phragmites australis, Carex oshimensis and Cyperus papyrus were tested separately and showed very similar results. In the second phase, pilot-scale tests were conducted to confirm the performance at a larger scale and evaluate the influence of hydraulic retention time, obtaining very high removal yields on turbidity (>92%), total suspended solids (TSS) (>85%), chemical oxygen demand (COD) (>89%), and five-day biological oxygen demand (BOD5) (>88%). Based on the results of the pilot-scale HFCW, a comparison with international recommendations by World Health Organization and European Union is discussed.


Subject(s)
Waste Disposal, Fluid/methods , Water Purification , Wetlands , Biological Oxygen Demand Analysis , Carex Plant , Cyperus , Poaceae , Wastewater
17.
Waste Manag Res ; 38(5): 487-513, 2020 May.
Article in English | MEDLINE | ID: mdl-32089127

ABSTRACT

Environmental pollution has become a relevant issue as the population rises and resources decrease. Reuse and recycling still have the greatest potential as they turn the waste into a new resource, representing the 'closed-loop' step of a circular economy (CE). Looking for new applications for agro-industry waste represents both an environmental issue, as its incorrect disposal is a cause of pollution, and a chance to exploit zero-cost natural wastes. The present review, with around 200 articles examined, focuses on possible reuses of these residues in (a) building construction, as additives to produce thermal and acoustic insulation panels, and (b) in water treatments, exploited for removal of pollutants. The selected materials (coconut, coffee, corn, cotton and rice) have industry production wastes with suitable applications in both sectors and huge worldwide availability; their reuse may thus represent a new resource, with an impact based on the production rate and the possible replacement of current inorganic materials. Along with possible implementation of the selected materials in the building industry and environmental engineering, a brief description of the production and supply chain are provided.


Subject(s)
Construction Industry , Environmental Pollutants , Industrial Waste , Recycling , Textiles
18.
J Hazard Mater ; 387: 121668, 2020 04 05.
Article in English | MEDLINE | ID: mdl-31784132

ABSTRACT

In recent years, photoelectrocatalysis (PEC) for the treatment of industrial wastewaters (IWWs) has been repeatedly proposed. However, despite the number of tests reported in literature, only a few of them were conducted on real IWWs. In this study, real pharmaceutical IWWs showing an intense recalcitrant color were treated by PEC and H2O2-assisted PEC (UV/TiO2/Bias and UV/H2O2/TiO2/Bias, respectively) on TiO2 meshes having sub-micrometric features obtained by Plasma Electrolytic Oxidation. Photolysis (UV), chemical oxidation (H2O2) and H2O2-assisted photolysis (UV/H2O2) were tested in the same reactor for comparison. The configuration UV/H2O2/TiO2/bias showed the best results in term of decolorization efficiency and rate, where decolorization was 55 % (single-step H2O2 dosing) and 44 % (three-step H2O2 dosing), after 2 h of contact time. In the same contact time, UV and UV/TiO2/Bias processes did not give decolorization. A more effective COD removal was measured for the PEC processes, UV/H2O2/TiO2/Bias (-24 %) and UV/TiO2/Bias (-20 %), while COD removal by UV was almost 0 %. Correspondingly, the SOUR values showed that PEC combined with a single-step H2O2 dosage was the most effective configuration, leading to the highest biodegradability of the treated IWW with respect to the other processes. The energy consumption analysis demonstrated that PEC+H2O2 (single-step dosage) optimized energy costs.


Subject(s)
Hydrogen Peroxide/chemistry , Industrial Waste/prevention & control , Titanium/chemistry , Wastewater/chemistry , Water Purification/methods , Catalysis , Electrochemistry/methods , Light , Oxidation-Reduction , Titanium/radiation effects
19.
J Environ Manage ; 236: 727-745, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30772730

ABSTRACT

It is evident from many recent papers that release of colored wastewater into the environment is source of pollution and this is a problem that particularly affect textile, dyeing and food industries. The review: (i) presents an analysis of various mechanisms involved in the different processes for color removal; (ii) describes conveniences and disadvantages that may exist in adopting one type of treatment in spite of another; (iii) reports the results of approximately 180 experimental tests. Both examples of treatments already widely applied to the real scale and still in the experimental phase are reported. This work focuses on different types of chemical/physical, chemical, electrochemical and biological processes applied in the field of color removal from industrial wastewater. Common chemical/physical treatments such as coagulation/flocculation, adsorption and membrane filtration as well as chemical-type processes are discussed, both those that exploit the traditional oxidizing chemical agents such as Ozone, H2O2 and reactive based on chlorine and those based on the principle of advanced chemical oxidation. In particular, both Hydroxyl radical based Advanced Oxidation Processes (AOPs) and Sulfate radical based AOPs are reported. The most commonly used Electrochemical processes for the removal of color are also presented as well as biological treatments. Based on more than 200 papers, this review provides important information on the use, effectiveness, advantages and downsides of the various treatments aimed at removing the color from the wastewater with a look at the technologies still under development.


Subject(s)
Ozone , Water Pollutants, Chemical , Color , Flocculation , Hydrogen Peroxide , Industrial Waste , Oxidation-Reduction , Textile Industry , Waste Disposal, Fluid , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...