Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol Biochem ; 69(3): 429-40, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23184732

ABSTRACT

Glycogen is the main store of readily energy in skeletal muscle and plays a key role in muscle function, demonstrated by the inability to sustain prolonged high-intensity exercise upon depletion of these glycogen stores. With prolonged exercise, glycogen depletion occurs and 5'-AMP-activated protein kinase (AMPK), a potent regulator of muscle metabolism and gene expression, is activated promoting molecular signalling that increases glucose uptake by muscular skeletal cells. The aim of this study was primarily to determine the effect of ultra-endurance exercise on muscle glycogen reserves and secondly to verify the influence of this type of exercise on AMPK protein expression. Twenty-four male Wistar rats, 60 days old, were divided into four experimental groups: sedentary, sedentary exhausted (SE), endurance trained (T) and endurance trained exhausted (TE). The animals ran for 10 to 90 min/day, 5 days/week, for 12 weeks to attain trained status. Rats were killed immediately after the exhaustion protocol, which consisted of running on a treadmill (at approximately 60% Vmax until exhaustion). Optical density of periodic acid-Schiff was detected and glycogen depletion observed predominantly in type I muscle fibres of the TE group and in both type I and II muscle fibres in the SE group. Plasma glucose decreased only in the TE group. Hepatic glycogen was increased in T group and significantly depleted in TE group. AMPK protein expression was significantly elevated in TE and T groups. In conclusion, acute exhaustive ultra-endurance exercise promoted muscle glycogen depletion. It seems that total AMPK protein and gene expression is more influenced by status training.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Glycogen/metabolism , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Physical Exertion , AMP-Activated Protein Kinases/genetics , Animals , Blood Glucose/metabolism , Gene Expression , Liver/metabolism , Male , Physical Conditioning, Animal , Rats , Rats, Wistar , Signal Transduction , Up-Regulation
2.
Braz J Med Biol Res ; 45(8): 777-83, 2012 08.
Article in English | MEDLINE | ID: mdl-22735180

ABSTRACT

We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min(-1)·mg protein(-1)) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a "time-efficient" strategy inducing metabolic adaptation.


Subject(s)
Carnitine O-Palmitoyltransferase/metabolism , Muscle, Skeletal/enzymology , Physical Conditioning, Animal/physiology , Adaptation, Physiological/physiology , Animals , Lipoprotein Lipase/metabolism , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Oxidation-Reduction , Random Allocation , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
3.
Horm Metab Res ; 42(13): 944-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21064006

ABSTRACT

The effects of endurance training on PGE (2) levels and upon the maximal activity of hepatic carnitine palmitoyltransferase (CPT) system were studied in rats bearing the Walker 256 carciosarcoma. Animals were randomly assigned to a sedentary control (SC), sedentary tumor-bearing (ST), exercised control (EC), and as an exercised tumor-bearing (ET) group. Trained rats ran on a treadmill (60% VO (2) max) for 60 min/day, 5 days/week, for 8 weeks. We examined the mRNA expression (RT-PCR) and maximal activity (radioassay) of the carnitine palmitoyltransferase system enzymes (CPT I and CPT II), as well as the gene expression of fatty-acid-binding protein (L-FABP) in the liver. PGE (2) content was measured in the serum, in tumor cells, and in the liver (ELISA). CPT I and CPT II maximal activity were decreased (p<0.01) in ST when compared with SC. In contrast, serum PGE (2) was increased (p<0.05) in cachectic animals as compared with SC. In the liver, PGE (2) content was also increased (p<0.05) when compared with SC. Endurance training restored maximal CPT I and CPT II activity in the tumor-bearing animals (p<0.0001). Exercise training induced PGE (2) levels to return to control values in the liver of tumor-bearing training rats (p<0.05) and decreased the eicosanoid content in the tumor (p<0.01). In conclusion, endurance training was capable of reestablishing liver carnitine palmitoyltransferase (CPT) system activity associated with decreased PGE (2) levels in cachectic tumor-bearing animals, preventing steatosis.


Subject(s)
Dinoprostone/blood , Fatty Liver/blood , Fatty Liver/complications , Neoplasms/blood , Neoplasms/complications , Physical Conditioning, Animal , Animals , Carnitine O-Palmitoyltransferase/metabolism , Fatty Liver/pathology , Liver/enzymology , Liver/pathology , Male , Neoplasms/pathology , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
4.
Toxicol Appl Pharmacol ; 240(1): 99-107, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19631232

ABSTRACT

Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feedback-controlled regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase II enzymes of xenobiotic metabolism. We have recently shown, that PPAR alpha agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR alpha agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPAR alpha agonist WY14643 to a larger extent than after induction with either compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UGT1A10. The PPAR alpha-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-induced reduction in energy expenditure by fatty acids as natural PPAR alpha ligands. The synergism of the PPAR alpha agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics.


Subject(s)
Hepatocytes/drug effects , Hepatocytes/metabolism , PPAR alpha/agonists , Phenobarbital/pharmacology , Pyrimidines/pharmacology , Thyroxine/metabolism , Triiodothyronine/metabolism , Animals , Cells, Cultured , Drug Synergism , Hepatocytes/enzymology , Male , PPAR alpha/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...